Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38535643

RESUMO

Addressing periprosthetic infections, which present significant healing challenges that often require revision surgeries, necessitates the development of novel antibacterial materials and implants. Current research focuses on creating materials that hinder bacterial adhesion, colonization, and proliferation in surrounding tissues. Boron (B)-containing compounds are known for their antibacterial properties and potential in bone metabolism for regenerative medicine. In this study, we synthesized B-containing tricalcium phosphate (0.3B-TCP) with 1.1 wt.% B content via precipitation from aqueous solutions and sintering at 1100 °C. X-ray diffraction confirmed the ceramic's primary crystalline phase as ß-TCP, with B evenly distributed according to energy-dispersive spectroscopy data. Electron paramagnetic resonance (EPR) data verified stable paramagnetic borate anions, indicating successful BO33- substitution for phosphate groups. The microstructural properties of 0.3B-TCP ceramic were assessed before and after soaking in a saline solution. Its bending strength was approximately 30 MPa, and its porosity was about 33%. 0.3B-TCP ceramic demonstrated significant antimicrobial efficacy against various bacterial strains and a fungus. Cytotoxicity evaluation using equine adipose tissue-derived mesenchymal stem cells and osteogenic differentiation assessment were conducted. The combination of antibacterial efficacy and good cytocompatibility suggests 0.3B-TCP ceramic as a promising bone substitute material.

2.
Heliyon ; 10(4): e25291, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38384581

RESUMO

Hydroxyapatite (HA) remains one of the most popular materials for various biomedical applications and its fields of application have been expanding. Lithium (Li+) is a promising candidate for modifying the biological behavior of HA. Li+ is present in trace amounts in the human body as an alkaline and bioelectric material. At the same time, the introduction of Li+ into the HA structure required charge balance compensation due to the difference in oxidation degree, and the scheme of this compensation is still an open question. In the present work, the results of the theoretical and experimental study of the Li+-doped HA synthesis are presented. According to X-ray diffraction data, Fourier transform infrared spectroscopy as well as the combination of electron paramagnetic resonance methods, the introduction of Li+ in the amount up to 0.05 mol% resulted in the preservation of the HA structure. Density functional theory calculations show that Li+ preferentially incorporates into the Ca (1) position with a small geometry perturbation. The less probable positioning in the Ca (2) position leads to a drastic perturbation of the anion channel.

3.
Biomedicines ; 12(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38397865

RESUMO

Creating bioactive materials for bone tissue regeneration and augmentation remains a pertinent challenge. One of the most promising and rapidly advancing approaches involves the use of low-temperature ceramics that closely mimic the natural composition of the extracellular matrix of native bone tissue, such as Hydroxyapatite (HAp) and its phase precursors (Dicalcium Phosphate Dihydrate-DCPD, Octacalcium Phosphate-OCP, etc.). However, despite significant scientific interest, the current knowledge and understanding remain limited regarding the impact of these ceramics not only on reparative histogenesis processes but also on the immunostimulation and initiation of local aseptic inflammation leading to material rejection. Using the stable cell models of monocyte-like (THP-1ATRA) and macrophage-like (THP-1PMA) cells under the conditions of LPS-induced model inflammation in vitro, the influence of DCPD, OCP, and HAp on cell viability, ROS and intracellular NO production, phagocytosis, and the secretion of pro-inflammatory cytokines was assessed. The results demonstrate that all investigated ceramic particles exhibit biological activity toward human macrophage and monocyte cells in vitro, potentially providing conditions necessary for bone tissue restoration/regeneration in the peri-implant environment in vivo. Among the studied ceramics, DCPD appears to be the most preferable for implantation in patients with latent inflammation or unpredictable immune status, as this ceramic had the most favorable overall impact on the investigated cellular models.

4.
Materials (Basel) ; 17(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38255483

RESUMO

The Ce0.5Y0.35Tb0.15F3 nanoparticles with a CeF3 hexagonal structure were synthesized using the co-precipitation technique. The average nanoparticle diameter was 14 ± 1 nm. The luminescence decay curves of the Ce0.5Y0.35Tb0.15F3 nanoparticles (λem = 541 nm, 5D4-7F5 transition of Tb3+) conjugated with Radachlorin using polyvinylpyrrolidone coating as well as without Radachlorin were detected. Efficient nonradiative energy transfer from Tb3+ to the Radachlorin was demonstrated. The maximum energy transfer coefficients for the nanoparticles conjugated with Radachlorin via polyvinylpyrrolidone and without the coating were 82% and 55%, respectively. The average distance between the nanoparticle surface and Radachlorin was R0 = 4.5 nm. The best results for X-ray-induced cytotoxicity were observed for the NP-PVP-Rch sample at the lowest Rch concentration. In particular, after X-ray irradiation, the survival of A549 human lung carcinoma cells decreased by ~12%.

5.
Structure ; 32(1): 74-82.e5, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38000368

RESUMO

Ribosome biogenesis is an energy-intense multistep process where even minimal defects can cause severe phenotypes up to cell death. Ribosome assembly is facilitated by biogenesis factors such as ribosome assembly factors. These proteins facilitate the interaction of ribosomal proteins with rRNA and correct rRNA folding. One of these maturation factors is RimP which is required for efficient 16S rRNA processing and 30S ribosomal subunit assembly. Here, we describe the binding mode of Staphylococcus aureus RimP to the small ribosomal subunit and present a 4.2 Å resolution cryo-EM reconstruction of the 30S-RimP complex. Together with the solution structure of RimP solved by NMR spectroscopy and RimP-uS12 complex analysis by EPR, DEER, and SAXS approaches, we show the specificity of RimP binding to the 30S subunit from S. aureus. We believe the results presented in this work will contribute to the understanding of the RimP role in the ribosome assembly mechanism.


Assuntos
Proteínas de Bactérias , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/química , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/metabolismo , Espalhamento a Baixo Ângulo , Subunidades Ribossômicas Menores de Bactérias/química , Difração de Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Ribossômicas/química , Subunidades Ribossômicas Menores/metabolismo , Microscopia Crioeletrônica
6.
Polymers (Basel) ; 15(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38006168

RESUMO

The synthesis of biocompatible and bioresorbable composite materials, such as a "polymer matrix-mineral constituent," stimulating the natural growth of living tissues and the restoration of damaged parts of the body, is one of the challenging problems in regenerative medicine and materials science. Composite films of bioresorbable polymer of polyvinylpyrrolidone (PVP) and hydroxyapatite (HA) were obtained. HA was synthesized in situ in the polymer solution. We applied electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) approaches to study the composite films' properties. The application of EPR in two frequency ranges allowed us to derive spectroscopic parameters of the nitrogen-based light and radiation-induced paramagnetic centers in HA, PVP and PVP-HA with high accuracy. It was shown that PVP did not significantly affect the EPR spectral and relaxation parameters of the radiation-induced paramagnetic centers in HA, while light-induced centers were detected only in PVP. Magic angle spinning (MAS) 1H NMR showed the presence of two signals at 4.7 ppm and -2.15 ppm, attributed to "free" water and hydroxyl groups, while the single line was attributed to 31P. NMR relaxation measurements for 1H and 31P showed that the relaxation decays were multicomponent processes that can be described by three components of the transverse relaxation times. The obtained results demonstrated that the applied magnetic resonance methods can be used for the quality control of PVP-HA composites and, potentially, for the development of analytical tools to follow the processes of sample treatment, resorption, and degradation.

7.
Nanomaterials (Basel) ; 13(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36770379

RESUMO

Mesoporous hydroxyapatite (HA) materials demonstrate advantages as catalysts and as support systems for catalysis, as adsorbent materials for removing contamination from soil and water, and as nanocarriers of functional agents for bone-related therapies. The present research demonstrates the possibility of the enlargement of the Brunauer-Emmett-Teller specific surface area (SSA), pore volume, and average pore diameter via changing the synthesis medium and ripening the material in the mother solution after the precipitation processes have been completed. HA powders were investigated via chemical analysis, X-ray diffraction analysis, Fourier-transform IR spectroscopy, transmission electron microscopy (TEM), and scanning (SEM) electron microscopy. Their SSA, pore volume, and pore-size distributions were determined via low-temperature nitrogen adsorption measurements, the zeta potential was established, and electron paramagnetic resonance (EPR) spectroscopy was performed. When the materials were synthesized in water-ethanol and water-acetone media, the SSA and total pore volume were 52.1 m2g-1 and 116.4 m2g-1, and 0.231 and 0.286 cm3g-1, respectively. After ripening for 21 days, the particle morphology changed, the length/width aspect ratio decreased, and looser and smaller powder agglomerates were obtained. These changes in their characteristics led to an increase in SSA for the water and water-ethanol samples, while pore volume demonstrated a multiplied increase for all samples, reaching 0.593 cm3g-1 for the water-acetone sample.

8.
Polymers (Basel) ; 16(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38201672

RESUMO

A detailed investigation of the liquid-state polymerization of diacetylenes by calorimetric (DSC) and spectroscopic (in situ EPR) thermal analysis techniques is performed. Isoconversional kinetic analysis of the calorimetric data reveals that liquid-state polymerization is governed by a well-defined rate-limiting step as evidenced by a nearly constant isoconversional activation energy. By comparison, solid-state polymerization demonstrates isoconversional activation energy that varies widely, signifying multistep kinetics behavior. Unlike the solid-state reaction that demonstrates an autocatalytic behavior, liquid-state polymerization follows a rather unusual zero-order reaction model as established by both DSC and EPR data. Both techniques have also determined strikingly similar Arrhenius parameters for liquid-state polymerization. Relative to the solid-state process, liquid-state polymerization results in quantitative elimination of the p-toluenesulfonate group and the formation of p-toluenesulfonic acid and a polymeric product of markedly different chemical and phase composition.

9.
Materials (Basel) ; 15(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36556852

RESUMO

Hydroxyapatite (HA) with a stoichiometry composition of Ca10(PO4)6(OH)2 is widely applied for various biomedical issues, first of all for bone defect substitution, as a catalyst, and as an adsorbent for soil and water purification. The incorporation of foreign ions changes the acid-base relation, microstructure, porosity, and other properties of the HA materials. Here, we report the results of calculations of the density functional theory and analyze the possibility of two foreign ions, CO32- and Mg2+, to be co-localized in the HA structure. The Na+ was taken into account for charge balance preservation. The analysis revealed the favorable incorporation of CO32- and Mg2+ as a complex when they interact with each other. The energy gain over the sole ion incorporation was pronounced when CO32- occupied the A position and Mg2+ was in the Ca(2) position and amounted to -0.31 eV. In the most energy-favorable complex, the distance between Mg2+ and the O atom of carbonate ion decreased compared to Mg…O distances to the surrounding phosphate or hydroxide ions, and amounted to 1.98 Å. The theoretical calculations agree well with the experimental data reported earlier. Understating the structure-properties relationship in HA materials varying in terms of composition, stoichiometry, and morphology paves the way to rational designs of efficient bio-based catalytic systems.

10.
Nanomaterials (Basel) ; 12(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36500841

RESUMO

Petroleum asphaltenes are considered the most irritating components of various oil systems, complicating the extraction, transportation, and processing of hydrocarbons. Despite the fact that the paramagnetic properties of asphaltenes and their aggregates have been studied since the 1950s, there is still no clear understanding of the structure of stable paramagnetic centers in petroleum systems. The paper considers the possibilities of various electron paramagnetic resonance (EPR) techniques to study petroleum asphaltenes and their solubility fractions using a carbon-centered stable free radical (FR) as an intrinsic probe. The dilution of asphaltenes with deuterated toluene made it possible to refine the change in the structure at the initial stage of asphaltene disaggregation. From the measurements of samples of bitumen, a planar circumcoronene-like model of FR structure and FR-centered asphaltenes is proposed. The results show that EPR-based approaches can serve as sensitive numerical tools to follow asphaltenes' structure and their disaggregation.

11.
Nanomaterials (Basel) ; 12(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35564312

RESUMO

Polymer self-healing films containing fragments of pillar[5]arene were obtained for the first time using thiol/disulfide redox cross-linking. These films were characterized by thermogravimetric analysis and differential scanning calorimetry, FTIR spectroscopy, and electron microscopy. The films demonstrated the ability to self-heal through the action of atmospheric oxygen. Using UV-vis, 2D 1H-1H NOESY, and DOSY NMR spectroscopy, the pillar[5]arene was shown to form complexes with the antimicrobial drug moxifloxacin in a 2:1 composition (logK11 = 2.14 and logK12 = 6.20). Films containing moxifloxacin effectively reduced Staphylococcus aureus and Klebsiella pneumoniae biofilms formation on adhesive surfaces.

12.
Materials (Basel) ; 16(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36614383

RESUMO

This work is devoted to the study of thermometric performances of Nd3+ (0.1 or 0.5 mol.%), Yb3+ (X%):YF3 nanoparticles. Temperature sensitivity of spectral shape is related to the phonon-assisted nature of energy transfer (PAET) between Nd3+ and Yb3+). However, in the case of single-doped Nd3+ (0.1 or 0.5 mol.%):YF3 nanoparticles, luminescence decay time (LDT) of 4F3/2 level of Nd3+ in Nd3+ (0.5 mol.%):YF3 decreases with the temperature decrease. In turn, luminescence decay time in Nd3+ (0.1 mol.%):YF3 sample remains constant. It was proposed, that at 0.5 mol.% the cross-relaxation (CR) between Nd3+ ions takes place in contradistinction from 0.1 mol.% Nd3+ concentration. The decrease of LDT with temperature is explained by the decrease of distances between Nd3+ with temperature that leads to the increase of cross-relaxation efficiency. It was suggested, that the presence of both CR and PAET processes in the studied system (Nd3+ (0.5 mol.%), Yb3+ (X%):YF3) nanoparticles provides higher temperature sensitivity compared to the systems having one process (Nd3+ (0.1 mol.%), Yb3+ (X%):YF3). The experimental results confirmed this suggestion. The maximum relative temperature sensitivity was 0.9%·K-1 at 80 K.

13.
ACS Omega ; 6(39): 25338-25349, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34632192

RESUMO

Substituted calcium phosphates (CaPs) are vital materials for the treatment of bone diseases and repairing and replacement of defects in human hard tissues. In this paper, we present some applications of the rarely used pulsed electron paramagnetic resonance (EPR) and hyperfine interaction spectroscopy approaches [namely, electron spin-echo envelope modulation (ESEEM) and electron-electron double-resonance detected nuclear magnetic resonance (EDNMR)] to investigate synthetic CaPs (hydroxyapatite, tricalcium, and octacalcium phosphate) doped with various cations (Li+, Na+, Mn2+, Cu2+, Fe3+, and Ba2+). These resonance techniques provide reliable tools to obtain unique information about the presence and localization of impurity centers and values of hyperfine and quadrupole tensors. We show that revealed in CaPs by EPR techniques, radiation-induced stable nitrogen-containing species and carbonate radicals can serve as sensitive paramagnetic probes to follow CaPs' structural changes caused by cation doping. The most pulsed EPR, ESEEM, and EDNMR spectra can be detected at room temperature, reducing the costs of the measurements and facilitating the usage of pulsed EPR techniques for CaP characterization.

14.
Langmuir ; 37(22): 6783-6791, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34041909

RESUMO

The use of vanadyl porphyrins either in synthetic compounds or naturally occurring in asphaltenes is investigated as a source of proton hyperpolarization via dynamic nuclear polarization (DNP) in nuclear magnetic resonance (NMR) experiments. The features of dynamics and location of the vanadyl VO2+ complex in aggregates within the oil asphaltene molecules are studied by means of DNP, electron paramagnetic resonance (EPR), and NMR field cycling relaxometry. Both the solid effect and Overhauser DNP were observed for the asphaltene solution in benzene, as well as in the solution and solid states for synthetic compounds. By comparison with a solution of synthetic vanadyl porphyrins, it is shown that vanadyl porphyrins in asphaltene aggregates are localized outside of the interface of the asphaltene aggregates and more exposed to the maltene molecules than "free" carbon-centered radicals associated with the core of asphaltene molecules. The perceptible contribution of scalar interaction is observed in solutions for both synthetic and asphaltene vanadyl porphyrins.

15.
Nanomaterials (Basel) ; 11(3)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809993

RESUMO

Mesoporous hydroxyapatite (HA) and iron(III)-doped HA (Fe-HA) are attractive materials for biomedical, catalytic, and environmental applications. In the present study, the nanopowders of HA and Fe-HA with a specific surface area up to 194.5 m2/g were synthesized by a simple precipitation route using iron oxalate as a source of Fe3+ cations. The influence of Fe3+ amount on the phase composition, powders morphology, Brunauer-Emmett-Teller (BET) specific surface area (S), and pore size distribution were investigated, as well as electron paramagnetic resonance and Mössbauer spectroscopy analysis were performed. According to obtained data, the Fe3+ ions were incorporated in the HA lattice, and also amorphous Fe oxides were formed contributed to the gradual increase in the S and pore volume of the powders. The Density Functional Theory calculations supported these findings and revealed Fe3+ inclusion in the crystalline region with the hybridization among Fe-3d and O-2p orbitals and a partly covalent bond formation, whilst the inclusion of Fe oxides assumed crystallinity damage and rather occurred in amorphous regions of HA nanomaterial. In vitro tests based on the MG-63 cell line demonstrated that the introduction of Fe3+ does not cause cytotoxicity and led to the enhanced cytocompatibility of HA.

16.
Langmuir ; 37(9): 2942-2953, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33630597

RESUMO

Decasubstituted pillar[5]arenes containing amidopyridine fragments have been synthesized for the first time. As was shown by UV-vis spectroscopy, the pillar[5]arenes with p-amidopyridine fragments form supramolecular associates with Cu(II) and Pd(II) cations in methanol in a 2:1 ratio. Using a sol-gel approach these associates are transformed into metallo-supramolecular coordination polymers (supramolecular gels) which were characterized as amorphous powders by scanning electron microscopy (SEM) and dynamic light scattering (DLS). The powders are able to selectively adsorb up to 46% of nitrophenols from water and were incorporated into an electrochemical sensor to selectively recognize them in aqueous acidic solution.

17.
ACS Omega ; 6(1): 135-147, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33458466

RESUMO

Upgrading of heavy oil in supercritical water (SCW) was analyzed by a comprehensive analysis of GC, GC-MS, NMR, and SEM-EDX with the aid of electron paramagnetic resonance (EPR) as a complementary technical analysis. The significant changes in the physical properties and chemical compositions reveal the effectiveness of heavy oil upgrading by SCW. Especially, changes of intensities of conventional EPR signals from free radicals (FRs) and paramagnetic vanadyl complexes (VO2+) with SCW treatment were noticed, and they were explained, respectively, to understand sulfur removal mechanism (by FR intensity and environment destruction) and metal removal mechanism (by VO2+ complexes' transformation). For the first time, it was shown that electronic relaxation times extracted from the pulsed EPR measurements can serve as sensitive parameters of SCW treatment. The results confirm that EPR can be used as a complementary tool for analyzing heavy oil upgrading in SCW, even for the online monitoring of oilfield upgrading.

18.
Ann Vasc Surg ; 72: 340-349, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32927044

RESUMO

BACKGROUND: The study aim is to determine the criteria for carotid atherosclerotic plaque instability with the use of an advanced ultrasound technology, immunohistochemical analysis, and electron paramagnetic resonance (EPR) and assess their correlations with histologic results. METHODS: A total of 92 patients were included in the study and were examined by ultrasound duplex scanning and ultrasound elastography. Plaques harvested during carotid endarterectomy were obtained for histologic analysis, immunofluorescent assay, and EPR spectroscopic measurements. RESULTS: Multivariate logistic regression analysis showed that plaques with an area >90 mm2 (odds ratio [OR], 4.05; 95% confidence interval [CI], 1.32-13.2; P = 0.006), plaque volume index > 0.6 cm3 (OR, 2.72; 95% CI, 1.05-9.58; P = 0.04), and juxtaluminal black area ≥8 mm2 (OR, 2.82; 95% CI, 1.22-6. 23; P = 0.02) were statistically significant independent predictors of histologically verified unstable plaques. Unstable plaques occurred in 94% of the patients with these indicators. Significant increases in the number of CD68+ and CD36+ cells (inflammatory markers) and CD31+ cells (neovasculogenesis markers) were revealed in unstable plaques by the immunohistochemical assay. EPR data analysis showed that divalent manganese could serve as a marker of plaque instability. CONCLUSIONS: Additional ultrasound criteria, verified by histologic studies, significantly increased the information content for identifying patients with unstable plaques, which can be of great importance in stratifying the risk of ischemic stroke, especially in asymptomatic patients. The degree of calcification is not a mandatory criterion for plaque stabilization.


Assuntos
Doenças das Artérias Carótidas/diagnóstico por imagem , Técnicas de Imagem por Elasticidade , Placa Aterosclerótica , Ultrassonografia Doppler Dupla , Adulto , Idoso , Idoso de 80 Anos ou mais , Doenças das Artérias Carótidas/cirurgia , Espectroscopia de Ressonância de Spin Eletrônica , Endarterectomia das Carótidas , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Ruptura Espontânea
19.
Materials (Basel) ; 13(19)2020 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33022953

RESUMO

Bioactive manganese (Mn)-doped ceramic coatings for intraosseous titanium (Ti) implants are developed. Arc plasma deposition procedure is used for coatings preparation. X-ray Diffraction, Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy, and Electron Paramagnetic Resonance (EPR) methods are applied for coatings characterization. The coatings are homogeneous, composed of the main phase α-tricalcium phosphate (α-TCP) (about 67%) and the minor phase hydroxyapatite (about 33%), and the Mn content is 2.3 wt%. EPR spectroscopy demonstrates that the Mn ions are incorporated in the TCP structure and are present in the coating in Mn2+ and Mn3+ oxidation states, being aggregated in clusters. The wetting contact angle of the deposited coatings is suitable for cells' adhesion and proliferation. In vitro soaking in physiological solution for 90 days leads to a drastic change in phase composition; the transformation into calcium carbonate and octacalcium phosphate takes place, and no more Mn is present. The absence of antibacterial activity against Escherichia coli, Enterococcus faecalis, and Pseudomonas aeruginosa bacteria strains is observed. A study of the metabolic activity of mouse fibroblasts of the NCTC L929 cell line on the coatings using the MTT (dye compound 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test demonstrates that there is no toxic effect on the cell culture. Moreover, the coating material supports the adhesion and proliferation of the cells. A good adhesion, spreading, and proliferative activity of the human tooth postnatal dental pulp stem cells (DPSC) is demonstrated. The developed coatings are promising for implant application in orthopedics and dentistry.

20.
J Phys Chem B ; 123(43): 9143-9154, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31593457

RESUMO

Nanopowders of aluminum-substituted (0-20 mol %) hydroxyapatite (HA) with the average size of 40-60 nm were synthesized by the precipitation method from nitrate solutions. A series of samples were studied by various analytical tools to elucidate the peculiarities of Al introduction. Electron paramagnetic resonance and pulsed electron-nuclear double resonance data demonstrate that incorporation of Al resulted in a decrease in the concentration of impurity carbonate anions and lead to an increase in the number of protons in the distant environment of the impurity nitrogen species. Density functional theory calculations show that the Al3+ incorporation is accompanied by the local positional rearrangement and the distortion of anion channel geometry. An in vitro test conducted on MG-63 cells demonstrates the cytocompatibility and magnification of the surface matrix characteristics with Al doping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...