Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(2): 1407-1422, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36598430

RESUMO

Grafting metal cations to missing linker defect sites in zirconium-based metal-organic frameworks, such as UiO-66, produces a uniquely well-defined and homotopic catalytically active site. We present here the synthesis and characterization of a group of UiO-66-supported metal catalysts, M-UiO-66 (M = Ni, Co, Cu, and Cr), for the catalytic dimerization of alkenes. The hydrogen-deuterium exchange via deuterium oxide adsorption followed by infrared spectroscopy showed that the last molecular water ligand desorbs from the sites after evacuation at 300 °C leading to M(OH)-UiO-66 structures. Adsorption of 1-butene is studied using calorimetry and density functional theory techniques to characterize the interactions of the alkene with metal cation sites that are found active for alkene oligomerization. For the most active Ni-UiO-66, the removal of molecular water from the active site significantly increases the 1-butene adsorption enthalpy and almost doubles the catalytic activity for 1-butene dimerization in comparison to the presence of water ligands. Other M-UiO-66 (M = Co, Cu, and Cr) exhibit 1-3 orders of magnitude lower catalytic activities compared to Ni-UiO-66. The catalytic activities correlate linearly with the Gibbs free energy of 1-butene adsorption. Density functional theory calculations probing the Cossee-Arlman mechanism for all metals support the differences in activity, providing a molecular level understanding of the metal site as the active center for 1-butene dimerization.


Assuntos
Compostos Organometálicos , Adsorção , Dimerização , Cátions , Zircônio/química , Alcenos , Água/química
2.
Angew Chem Int Ed Engl ; 61(42): e202205575, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36017770

RESUMO

An anionic Rh-Ga complex catalyzed the hydrodefluorination of challenging C-F bonds in electron-rich aryl fluorides and trifluoromethylarenes when irradiated with violet light in the presence of H2 , a stoichiometric alkoxide base, and a crown-ether additive. Based on theoretical calculations, the lowest unoccupied molecular orbital (LUMO), which is delocalized across both the Rh and Ga atoms, becomes singly occupied upon excitation, thereby poising the Rh-Ga complex for photoinduced single-electron transfer (SET). Stoichiometric and control reactions support that the C-F activation is mediated by the excited anionic Rh-Ga complex. After SET, the proposed neutral Rh0 intermediate was detected by EPR spectroscopy, which matched the spectrum of an independently synthesized sample. Deuterium-labeling studies corroborate the generation of aryl radicals during catalysis and their subsequent hydrogen-atom abstraction from the THF solvent to generate the hydrodefluorinated arene products. Altogether, the combined experimental and theoretical data support an unconventional bimetallic excitation that achieves the activation of strong C-F bonds and uses H2 and base as the terminal reductant.

3.
ACS Appl Mater Interfaces ; 13(29): 34419-34427, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34275268

RESUMO

The application of metal-organic frameworks (MOFs) as electrocatalysts for small molecule activation has been an emerging topic of research. Previous studies have suggested that two-dimensional (2D) dithiolene-based MOFs are among the most active for the hydrogen evolution reaction (HER). Here, a three-dimensional (3D) dithiolene-based MOF, Cu[Ni(2,3-pyrazinedithiolate)2] (1), is evaluated as an electrocatalyst for the HER. In pH 1.3 aqueous electrolyte solution, 1 exhibits a catalytic onset at -0.43 V vs the reversible hydrogen electrode (RHE), an overpotential (η10 mA/cm2) of 0.53 V to reach a current density of 10 mA/cm2, and a Tafel slope of 69.0 mV/dec. Interestingly, under controlled potential electrolysis, 1 undergoes an activation process that results in a more active catalyst with a 200 mV reduction in the catalytic onset and η10 mA/cm2. It is proposed that the activation process is a result of the cleavage of Cu-N bonds in the presence of protons and electrons. This hypothesis is supported by various experimental studies and density functional theory calculations.

4.
Inorg Chem ; 59(19): 14251-14262, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32954721

RESUMO

Nature utilizes multimetallic sites in metalloenzymes to enable multielectron chemical transformations at ambient conditions and low overpotentials. One such example of multimetallic cooperativity can be found in the C-cluster of Ni-carbon monoxide dehydrogenase (CODH), which interconverts CO and CO2. Toward a potential functional model of the C-cluster, a family of Ni-Fe bimetallic complexes was synthesized that contain direct metal-metal bonding interactions. The complexes were characterized by X-ray crystallography, various spectroscopies (NMR, EPR, UV-vis, Mössbauer), and theoretical calculations. The Ni-Fe bimetallic system has a reversible Fe(III)/Fe(II) redox couple at -2.10 V (vs Fc+/Fc). The Fe-based "redox switch" can turn on CO2 reactivity at the Ni(0) center by leveraging the Ni→Fe dative interaction to attenuate the Ni(0) electron density. The reduced Ni(0)Fe(II) species mediated the formal two-electron reduction of CO2 to CO, providing a Ni-CO adduct and CO32- as products. During the reaction, an intermediate was observed that is proposed to be a Ni-CO2 species.


Assuntos
Materiais Biomiméticos/química , Complexos de Coordenação/química , Ferro/química , Níquel/química , Dióxido de Carbono/química , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...