Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neural Eng ; 17(3): 036032, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32485702

RESUMO

OBJECTIVE: The development of electrode arrays able to reliably record brain electrical activity is a critical issue in brain machine interface (BMI) technology. In the present study we undertook a comprehensive physico-chemical, physiological, histological and immunohistochemical characterization of new single-walled carbon nanotubes (SWCNT)-based electrode arrays grafted onto medium-density polyethylene (MD-PE) films. APPROACH: The long-term electrical stability, flexibility, and biocompatibility of the SWCNT arrays were investigated in vivo in laboratory rats by two-months recording and analysis of subdural electrocorticogram (ECoG). Ex-vivo characterization of a thin flexible and single probe SWCNT/polymer electrode is also provided. MAIN RESULTS: The SWCNT arrays were able to capture high quality and very stable ECoG signals across 8 weeks. The histological and immunohistochemical analyses demonstrated that SWCNT arrays show promising biocompatibility properties and may be used in chronic conditions. The SWCNT-based arrays are flexible and stretchable, providing low electrode-tissue impedance, and, therefore, high compliance with the irregular topography of the cortical surface. Finally, reliable evoked synaptic local field potentials in rat brain slices were recorded using a special SWCNT-polymer-based flexible electrode. SIGNIFICANCE: The results demonstrate that the SWCNT arrays grafted in MD-PE are suitable for manufacturing flexible devices for subdural ECoG recording and might represent promising candidates for long-term neural implants for epilepsy monitoring or neuroprosthetic BMI.


Assuntos
Interfaces Cérebro-Computador , Nanotubos de Carbono , Animais , Córtex Cerebral , Eletrodos , Polímeros , Ratos
2.
Neurotox Res ; 38(2): 249-265, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32319018

RESUMO

Seizures originating from limbic structures, especially when prolonged for several minutes/hours up to status epilepticus (SE), can cause specific neurodegenerative phenomena in limbic and subcortical structures. The cholinergic nuclei belonging to the basal forebrain (BF) (namely, medial septal nucleus (MSN), diagonal band of Broca (DBB), and nucleus basalis of Meynert (NBM)) belong to the limbic system, while playing a pivotal role in cognition and sleep-waking cycle. Given the strong interconnections linking these limbic nuclei with limbic cortical structures, a persistent effect of SE originating from limbic structures on cBF morphology is plausible. Nonetheless, only a few experimental studies have addressed this issue. In this review, we describe available data and discuss their significance in the scenario of seizure-induced brain damage. In detail, the manuscript moves from a recent study in a model of focally induced limbic SE, in which the pure effects of seizure spreading through the natural anatomical pathways towards the cholinergic nuclei of BF were tracked by neuronal degeneration. In this experimental setting, a loss of cholinergic neurons was measured in all BF nuclei, to various extents depending on the specific nucleus. These findings are discussed in the light of the effects on the very same nuclei following SE induced by systemic injections of kainate or pilocarpine. The various effects including discrepancies among different studies are discussed. Potential implications for human diseases are included.


Assuntos
Prosencéfalo Basal/fisiopatologia , Núcleo Basal de Meynert/fisiopatologia , Neurônios Colinérgicos/patologia , Feixe Diagonal de Broca/fisiopatologia , Núcleos Septais/fisiopatologia , Estado Epiléptico/fisiopatologia , Tonsila do Cerebelo/fisiopatologia , Animais , Prosencéfalo Basal/patologia , Núcleo Basal de Meynert/patologia , Córtex Cerebral/fisiopatologia , Feixe Diagonal de Broca/patologia , Hipocampo/fisiopatologia , Humanos , Vias Neurais/fisiopatologia , Núcleos Septais/patologia , Estado Epiléptico/patologia
3.
J Nanosci Nanotechnol ; 20(7): 4549-4556, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31968517

RESUMO

To meet the increasing demand, for stretchable conductive materials in a wide range of applications, innovative conductors based on single wall carbon nanotubes (SWCNT) self-grafted on different polymer films, are assembled. Aiming at a simple technology for flexible and stretchable electronic devices, and contrary to what commonly reported for carbon nanotubes (CNT), no chemical functionalization of SWCNT is necessary for stable grafting onto several polymeric surfaces. The novelty and functionality of our composite materials stand in the synergy among the intrinsic biocompatibility of CNT, a fully inert material, their electrical conductivity, and the stretchable-viscoelastic properties of the polymer-nanotube bundles composites. Electrical characterization of both unstretched and strongly stretched planar film conductors is provided, demonstrating the use of this new composite material for technological application. Also, an insight into the mechanisms of strong adhesion to the polymer is obtained by scanning electron microscopy (SEM) of the surface composite. As an example of technological application of such stretchable circuitry, the electrical functionality of a carbon nanotube-based six-sensor (electrode) grid is used to record subdural electrocorticograms in freely-moving laboratory rats over approximately three months.

4.
Int J Mol Sci ; 20(15)2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31387280

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor featuring rapid cell proliferation, treatment resistance, and tumor relapse. This is largely due to the coexistence of heterogeneous tumor cell populations with different grades of differentiation, and in particular, to a small subset of tumor cells displaying stem cell-like properties. This is the case of glioma stem cells (GSCs), which possess a powerful self-renewal capacity, low differentiation, along with radio- and chemo-resistance. Molecular pathways that contribute to GBM stemness of GSCs include mTOR, Notch, Hedgehog, and Wnt/ß-catenin. Remarkably, among the common biochemical effects that arise from alterations in these pathways, autophagy suppression may be key in promoting GSCs self-renewal, proliferation, and pluripotency maintenance. In fact, besides being a well-known downstream event of mTOR hyper-activation, autophagy downregulation is also bound to the effects of aberrantly activated Notch, Hedgehog, and Wnt/ß-catenin pathways in GBM. As a major orchestrator of protein degradation and turnover, autophagy modulates proliferation and differentiation of normal neuronal stem cells (NSCs) as well as NSCs niche maintenance, while its failure may contribute to GSCs expansion and maintenance. Thus, in the present review we discuss the role of autophagy in GSCs metabolism and phenotype in relationship with dysregulations of a variety of NSCs controlling pathways, which may provide novel insights into GBM neurobiology.


Assuntos
Autofagia , Neoplasias Encefálicas/etiologia , Neoplasias Encefálicas/metabolismo , Glioblastoma/etiologia , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Biomarcadores , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/terapia , Diferenciação Celular , Transformação Celular Neoplásica/metabolismo , Gerenciamento Clínico , Glioblastoma/diagnóstico , Glioblastoma/terapia , Humanos , Terapia de Alvo Molecular , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
5.
Front Immunol ; 10: 628, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984192

RESUMO

The wealth of recent evidence about a bi-directional communication between nerve- and immune- cells revolutionized the traditional concept about the brain as an "immune-privileged" organ while opening novel avenues in the pathophysiology of CNS disorders. In fact, altered communication between the immune and nervous system is emerging as a common hallmark in neuro-developmental, neurodegenerative, and neuro-immunological diseases. At molecular level, the ubiquitin proteasome machinery operates as a sentinel at the crossroad between the immune system and brain. In fact, the standard proteasome and its alternative/inducible counterpart, the immunoproteasome, operate dynamically and coordinately in both nerve- and immune- cells to modulate neurotransmission, oxidative/inflammatory stress response, and immunity. When dysregulations of the proteasome system occur, altered amounts of standard- vs. immune-proteasome subtypes translate into altered communication between neurons, glia, and immune cells. This contributes to neuro-inflammatory pathology in a variety of neurological disorders encompassing Parkinson's, Alzheimer's, and Huntingtin's diseases, brain trauma, epilepsy, and Multiple Sclerosis. In the present review, we analyze those proteasome-dependent molecular interactions which sustain communication between neurons, glia, and brain circulating T-lymphocytes both in baseline and pathological conditions. The evidence here discussed converges in that upregulation of immunoproteasome to the detriment of the standard proteasome, is commonly implicated in the inflammatory- and immune- biology of neurodegeneration. These concepts may foster additional studies investigating the role of immunoproteasome as a potential target in neurodegenerative and neuro-immunological disorders.


Assuntos
Encefalopatias/imunologia , Encéfalo/imunologia , Neuroimunomodulação , Estresse Oxidativo/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Transmissão Sináptica/imunologia , Animais , Encéfalo/patologia , Encefalopatias/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Ubiquitinas/imunologia
6.
Neurobiol Dis ; 121: 76-94, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30243733

RESUMO

Status epilepticus (SE) of limbic onset might cause degenerative phenomena in different brain structures, and may be associated with chronic cognitive and EEG effects. In the present study SE was evoked focally by microinfusing picomolar doses of cyclothiazide+bicuculline into the anterior extent of the piriform cortex (APC) in rats, the so-called area tempestas, an approach which allows to evaluate selectively the effects of seizure spreading through the natural anatomical circuitries up to secondary generalization. In the brain of rats submitted to SE we analyzed neuronal density, occurrence of degenerative phenomena (by Fluoro-Jade B-FJB- staining) and expression of heat shock protein-70 (HSP-70) in the piriform cortex, the hippocampus and ventromedial thalamus. We further analyzed in detail, the loss of cholinergic neurons, and the presence of FJB- and HSP-70 positive neurons in basal forebrain cholinergic areas, i.e. the medial septal nucleus (MSN, Ch1), the diagonal band of Broca (DBB, Ch2 and Ch3) and the Nucleus basalis of Meynert (NBM, Ch4). In fact, these nuclei are strictly connected with limbic structures, and play a key pivotal role in different cognitive functions and vigilance. Although recent studies begun to investigate these nuclei in experimental epilepsy and in persons with epilepsy, conflicting results were obtained so far. We showed that after severe and long-lasting, focally induced limbic SE there is a significant cell loss within all of the abovementioned cholinergic nuclei ipsi- and contra-laterally to the infusion site. In parallel, these nuclei show also FJB and heat shock protein-70 expression. Those effects vary depending on the single nucleus assessed and on the severity of the SE seizure score. We also showed the occurrence of cell loss and degenerative phenomena in limbic cortex, hippocampus and limbic thalamic areas. These novel findings show direct evidence of SE-induced neuronal damage which is solely due to seizure activity ruling out potential confounding effects produced by systemic pro-convulsant neurotoxins. A damage to basal forebrain cholinergic nuclei, which may underlie cognitive alterations, is documented for the first time in a model of SE triggered focally.


Assuntos
Prosencéfalo Basal/patologia , Encéfalo/patologia , Neurônios Colinérgicos/patologia , Estado Epiléptico/patologia , Animais , Benzotiadiazinas/administração & dosagem , Bicuculina/administração & dosagem , Encéfalo/metabolismo , Proteínas de Choque Térmico HSP72/metabolismo , Masculino , Córtex Piriforme/metabolismo , Córtex Piriforme/patologia , Ratos Sprague-Dawley , Estado Epiléptico/induzido quimicamente
7.
Mol Brain ; 10(1): 39, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821279

RESUMO

We have recently shown that pharmacological blockade of mGlu2 metabotropic glutamate receptors protects vulnerable neurons in the 4-vessel occlusion model of transient global ischemia, whereas receptor activation amplifies neuronal death. This raised the possibility that endogenous activation of mGlu2 receptors contributes to the pathophysiology of ischemic neuronal damage. Here, we examined this possibility using two models of transient focal ischemia: (i) the monofilament model of middle cerebral artery occlusion (MCAO) in mice, and (ii) the model based on intracerebral infusion of endothelin-1 (Et-1) in rats. Following transient MCAO, mGlu2 receptor knockout mice showed a significant reduction in infarct volume and an improved short-term behavioural outcome, as assessed by a neurological disability scale and the "grip test". Following Et-1 infusion, Grm2 gene mutated Hannover Wistar rats lacking mGlu2 receptors did not show changes in the overall infarct volume as compared to their wild-type counterparts, although they showed a reduced infarct area in the agranular insular cortex. Interestingly, however, mGlu2 receptor-deficient rats performed better than wild-type rats in the adhesive tape test, in which these rats did not show the laterality preference typically observed after focal ischemia. These findings support the hypothesis that activation of mGlu2 receptors is detrimental in the post-ischemic phase, and support the use of mGlu2 receptor antagonists in the experimental treatment of brain ischemia.


Assuntos
Deleção de Genes , Ataque Isquêmico Transitório/genética , Receptores de Glutamato Metabotrópico/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Comportamento Animal , Córtex Cerebral/patologia , Infarto Cerebral/patologia , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Ataque Isquêmico Transitório/patologia , Ataque Isquêmico Transitório/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Ratos Wistar , Receptores de Glutamato Metabotrópico/química , Receptores de Glutamato Metabotrópico/deficiência
8.
Histol Histopathol ; 32(11): 1115-1123, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28397197

RESUMO

Amyotrophic lateral sclerosis (ALS) is typically defined by a loss of motor neurons in the central nervous system. Accordingly, morphological analysis for decades considered motor neurons (in the cortex, brainstem and spinal cord) as the neuronal population selectively involved in ALS. Similarly, this was considered the pathological marker to score disease severity ex vivo both in patients and experimental models. However, the concept of non-autonomous motor neuron death was used recently to indicate the need for additional cell types to produce motor neuron death in ALS. This means that motor neuron loss occurs only when they are connected with other cell types. This concept originally emphasized the need for resident glia as well as non-resident inflammatory cells. Nowadays, the additional role of neurons other than motor neurons emerged in the scenario to induce non-autonomous motor neuron death. In fact, in ALS neurons diverse from motor neurons are involved. These cells play multiple roles in ALS: (i) they participate in the chain of events to produce motor neuron loss; (ii) they may even degenerate more than and before motor neurons. In the present manuscript evidence about multi-neuronal involvement in ALS patients and experimental models is discussed. Specific sub-classes of neurons in the whole spinal cord are reported either to degenerate or to trigger neuronal degeneration, thus portraying ALS as a whole spinal cord disorder rather than a disease affecting motor neurons solely. This is associated with a novel concept in motor neuron disease which recruits abnormal mechanisms of cell to cell communication.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Neurônios Motores/patologia , Degeneração Neural/patologia , Neurônios/patologia , Animais , Humanos , Doença dos Neurônios Motores/patologia , Medula Espinal/patologia
9.
Arch Ital Biol ; 155(4): 118-130, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29405029

RESUMO

Neural progenitor cells (NPC) represent the stem-like niche of the central nervous system that maintains a regenerative potential also in the adult life. Despite NPC in the brain are well documented, the presence of NPC in the spinal cord has been controversial for a long time. This is due to a scarce activity of NPC within spinal cord, which also makes difficult their identification. The present review recapitulates the main experimental studies, which provided evidence for the occurrence of NPC within spinal cord, with a special emphasis on spinal cord injury and amyotrophic lateral sclerosis. By using experimental models, here we analyse the site-specificity, the phenotype and the main triggers of spinal cord NPC. Moreover, data are reported on the effect of specific neurogenic stimuli on these spinal cord NPC in an effort to comprehend the endogenous neurogenic potential of this stem cell niche.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Medula Espinal/citologia , Animais , Humanos
11.
Int J Biochem Cell Biol ; 69: 70-4, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26485684

RESUMO

The prototype of long pentraxins, Pentraxin 3 (PTX3), is an evolutionarily conserved multifunctional, pattern-recognition protein constituted by a cyclic multimeric structure. PTX3 interacts with a variety of ligands, such as growth factors, extracellular matrix components, molecules of the complement cascade, pathogens recognition proteins, angiogenetic and adhesion molecules. PTX3 could be considered as a molecular link between innate and adaptive immunity as well as between focal and circulating responses during inflammation. In fact, it modulates the functions of resident dendritic cells and circulating lymphocytes. Recent evidence demonstrates that manipulation of PTX3 may produce even opposite effects depending on which target organ is considered and the physiopathological context. In the present review we discuss the good and bad cops of PTX3 concerning multifacted effects on inflammation, innate immunity, brain diseases and tumorigenesis. Finally, a perspective on PTX3 and autophagy is provided as a convergent pathway.


Assuntos
Neoplasias Encefálicas/metabolismo , Proteína C-Reativa/fisiologia , Carcinogênese/metabolismo , Componente Amiloide P Sérico/fisiologia , Animais , Apoptose , Doenças Autoimunes/metabolismo , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Humanos , Imunidade Inata
12.
Mol Brain ; 8(1): 66, 2015 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-26496940

RESUMO

BACKGROUND: To examine whether metabotropic glutamate (mGlu) receptors have any role in mechanisms that shape neuronal vulnerability to ischemic damage, we used the 4-vessel occlusion (4-VO) model of transient global ischemia in rats. 4-VO in rats causes a selective death of pyramidal neurons in the hippocampal CA1 region, leaving neurons of the CA3 region relatively spared. We wondered whether changes in the expression of individual mGlu receptor subtypes selectively occur in the vulnerable CA1 region during the development of ischemic damage, and whether post-ischemic treatment with drugs targeting the selected receptor(s) affords neuroprotection. RESULTS: We found that 4-VO caused significantly reduction in the transcript of mGlu2 receptors in the CA1 region at times that preceded the anatomical evidence of neuronal death. Down-regulation of mGlu2 receptors was associated with reduced H3 histone acetylation at the Grm2 promoter. The transcripts of other mGlu receptor subtypes were unchanged in the CA1 region of 4-VO rats. Ischemia did not cause changes in mGlu2 receptor mRNA levels in the resistant CA3 region, which, interestingly, were lower than in the CA1 region. Targeting the mGlu2 receptors with selective pharmacologic ligands had profound effects on ishemic neuronal damage. Post-ischemic oral treatment with the selective mGlu2 receptor NAM (negative allosteric modulator), ADX92639 (30 mg/kg), was highly protective against ischemic neuronal death. In contrast, s.c. administration of the mGlu2 receptor enhancer, LY487379 (30 mg/kg), amplified neuronal damage in the CA1 region and extended the damage to the CA3 region. CONCLUSION: These findings suggest that the mGlu2 receptor is an important player in mechanisms regulating neuronal vulnerability to ischemic damage, and that mGlu2 receptor NAMs are potential candidates in the experimental treatments of disorders characterized by brain hypoperfusion, such as hypovolemic shock and cardiac arrest.


Assuntos
Isquemia Encefálica/patologia , Hipocampo/patologia , Neurônios/patologia , Neuroproteção , Receptores de Glutamato Metabotrópico/metabolismo , Acetilação/efeitos dos fármacos , Regulação Alostérica/efeitos dos fármacos , Animais , Temperatura Corporal/efeitos dos fármacos , Isquemia Encefálica/metabolismo , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/patologia , Região CA3 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/patologia , Morte Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Epigênese Genética/efeitos dos fármacos , Perfilação da Expressão Gênica , Hipocampo/efeitos dos fármacos , Histona Desacetilase 2/metabolismo , Histonas/metabolismo , Ligantes , Masculino , Terapia de Alvo Molecular , Neurônios/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Piridinas/farmacologia , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/genética , Sulfonamidas/farmacologia , Fatores de Tempo , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...