Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Tree Physiol ; 40(12): 1680-1696, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-32785621

RESUMO

The intensity of extreme heat and drought events has drastically risen in recent decades and will likely continue throughout the century. Northern forests have already seen increases in tree mortality and a lack of new recruitment, which is partially attributed to these extreme events. Boreal species, such as paper birch (Betula papyrifera) and white spruce (Picea glauca), appear to be more sensitive to these changes than lower-latitude species. Our objectives were to investigate the effects of repeated heatwaves and drought on young paper birch and white spruce trees by examining (i) responses in leaf gas exchange and plant growth and (ii) thermal acclimation of photosynthetic and respiratory traits to compare ecophysiological responses of two co-occurring, yet functionally dissimilar species. To address these objectives, we subjected greenhouse-grown seedlings to two consecutive summers of three 8-day long, +10 °C heatwaves in elevated atmospheric CO2 conditions with and without water restriction. The data show that heatwave stress reduced net photosynthesis, stomatal conductance and growth-more severely so when combined with drought. Acclimation of both photosynthesis and respiration did not occur in either species. The combination of heat and drought stress had a similar total effect on both species, but each species adjusted traits differently to the combined stress. Birch experienced greater declines in gas exchange across both years and showed moderate respiratory but not photosynthetic acclimation to heatwaves. In spruce, heatwave stress reduced the increase in basal area in both experimental years and had a minor effect on photosynthetic acclimation. The data suggest these species lack the ability to physiologically adjust to extreme heat events, which may limit their future distributions, thereby altering the composition of boreal forests.


Assuntos
Picea , Árvores , Aclimatação , Dióxido de Carbono , Fotossíntese , Temperatura
2.
Front Plant Sci ; 7: 78, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26909083

RESUMO

The metabolism of glutamate into ornithine, arginine, proline, and polyamines is a major network of nitrogen-metabolizing pathways in plants, which also produces intermediates like nitric oxide, and γ-aminobutyric acid (GABA) that play critical roles in plant development and stress. While the accumulations of intermediates and the products of this network depend primarily on nitrogen assimilation, the overall regulation of the interacting sub-pathways is not well understood. We tested the hypothesis that diversion of ornithine into polyamine biosynthesis (by transgenic approach) not only plays a role in regulating its own biosynthesis from glutamate but also affects arginine and proline biosynthesis. Using two high putrescine producing lines of Arabidopsis thaliana (containing a transgenic mouse ornithine decarboxylase gene), we studied the: (1) effects of exogenous supply of carbon and nitrogen on polyamines and pools of soluble amino acids; and, (2) expression of genes encoding key enzymes in the interactive pathways of arginine, proline and GABA biosynthesis as well as the catabolism of polyamines. Our findings suggest that: (1) the overall conversion of glutamate to arginine and polyamines is enhanced by increased utilization of ornithine for polyamine biosynthesis by the transgene product; (2) proline and arginine biosynthesis are regulated independently of polyamines and GABA biosynthesis; (3) the expression of most genes (28 that were studied) that encode enzymes of the interacting sub-pathways of arginine and GABA biosynthesis does not change even though overall biosynthesis of Orn from glutamate is increased several fold; and (4) increased polyamine biosynthesis results in increased assimilation of both nitrogen and carbon by the cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...