Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Crystallogr ; 55(Pt 2): 271-283, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35497654

RESUMO

A description and the performance of the very small angle neutron scattering diffractometer at the National Institute of Standards and Technology are presented. The measurement range of the instrument extends over three decades of momentum transfer q from 2 × 10-4 to 0.7 Å-1. The entire scattering angle range from 8 × 10-5 to π/6 rad (30°) can be measured simultaneously using three separate detector carriages on rails holding nine 2D detector arrays. Versatile choices of collimation options and neutron wavelength selection allow the q resolution and beam intensity to be optimized for the needs of the experiment. High q resolution is achieved using multiple converging-beam collimation with circular pinholes combined with refractive lenses and prisms. Relaxed vertical resolution with much higher beam intensity can be achieved with narrow slit collimation and a broad wavelength range chosen by truncating the moderator source distribution below 4 Šwith a Be crystalline filter and above 8 Šwith a supermirror deflector. Polarized beam measurements with full polarization analysis are also provided by a high-performance supermirror polarizer and spin flipper, capable of producing flipping ratios of over 100, along with a high-efficiency 3He polarization analyzer.

2.
J Appl Crystallogr ; 54(Pt 2): 461-472, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33953652

RESUMO

Measurements, calculations and design ideas to mitigate background caused by extraneous scattering in small-angle neutron scattering (SANS) instruments are presented. Scattering includes processes such as incoherent scattering, inelastic scattering and Bragg diffraction. Three primary sources of this type of background are investigated: the beam stop located in front of the detector, the inside lining of the detector vessel and the environment surrounding the sample. SANS measurements were made where materials with different albedos were placed in all three locations. Additional measurements of the angle-dependent scattering over the angular range of 0.7π-0.95π rad were completed on 16 different shielding materials at five wavelengths. The data were extrapolated to cover scattering angles from π/2 to π rad in order to estimate the materials' albedos. Modifications to existing SANS instruments and sample environments to mitigate extraneous scattering from surfaces are discussed.

3.
J Vis Exp ; (122)2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28447997

RESUMO

A procedure for the operation of a new dielectric RheoSANS instrument capable of simultaneous interrogation of the electrical, mechanical and microstructural properties of complex fluids is presented. The instrument consists of a Couette geometry contained within a modified forced convection oven mounted on a commercial rheometer. This instrument is available for use on the small angle neutron scattering (SANS) beamlines at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR). The Couette geometry is machined to be transparent to neutrons and provides for measurement of the electrical properties and microstructural properties of a sample confined between titanium cylinders while the sample undergoes arbitrary deformation. Synchronization of these measurements is enabled through the use of a customizable program that monitors and controls the execution of predetermined experimental protocols. Described here is a protocol to perform a flow sweep experiment where the shear rate is logarithmically stepped from a maximum value to a minimum value holding at each step for a specified period of time while frequency dependent dielectric measurements are made. Representative results are shown from a sample consisting of a gel composed of carbon black aggregates dispersed in propylene carbonate. As the gel undergoes steady shear, the carbon black network is mechanically deformed, which causes an initial decrease in conductivity associated with the breaking of bonds comprising the carbon black network. However, at higher shear rates, the conductivity recovers associated with the onset of shear thickening. Overall, these results demonstrate the utility of the simultaneous measurement of the rheo-electro-microstructural properties of these suspensions using the dielectric RheoSANS geometry.


Assuntos
Impedância Elétrica , Difração de Nêutrons/instrumentação , Reologia/instrumentação , Espalhamento a Baixo Ângulo , Suspensões , Fatores de Tempo
4.
J Phycol ; 44(3): 739-50, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27041432

RESUMO

The Chlorophyceae (sensu Mattox and Stewart) is a morphologically diverse class of the Chlorophyta displaying biflagellate and quadriflagellate motile cells with varying configurations of the flagellar apparatus. Phylogenetic analyses of 18S rDNA data and combined 18S and 26S rDNA data from a broad range of chlorophycean taxa uncovered five major monophyletic groups (Chlamydomonadales, Sphaeropleales, Oedogoniales, Chaetophorales, and Chaetopeltidales) but could not resolve their branching order. To gain insight into the interrelationships of these groups, we analyzed multiple genes encoded by the chloroplast genomes of Chlamydomonas reinhardtii P. A. Dang. and Chlamydomonas moewusii Gerloff (Chlamydomonadales), Scenedesmus obliquus (Turpin) Kütz. (Sphaeropleales), Oedogonium cardiacum Wittr. (Oedogoniales), Stigeoclonium helveticum Vischer (Chaetophorales), and Floydiella terrestris (Groover et Hofstetter) Friedl et O'Kelly (Chaetopeltidales). The C. moewusii, Oedogonium, and Floydiella chloroplast DNAs were partly sequenced using a random strategy. Trees were reconstructed from nucleotide and amino acid data sets derived from 44 protein-coding genes of 11 chlorophytes and nine streptophytes as well as from 57 protein-coding genes of the six chlorophycean taxa. All best trees identified two robustly supported major lineages within the Chlorophyceae: a clade uniting the Chlamydomonadales and Sphaeropleales, and a clade uniting the Oedogoniales, Chaetophorales, and Chaetopeltidales (OCC clade). This dichotomy is independently supported by molecular signatures in chloroplast genes, such as insertions/deletions and the distribution of trans-spliced group II introns. Within the OCC clade, the sister relationship observed for the Chaetophorales and Chaetopeltidales is also strengthened by independent data. Character state reconstruction of basal body orientation allowed us to refine hypotheses regarding the evolution of the flagellar apparatus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...