Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 9(11): 3154-3160, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29775319

RESUMO

Progress in the development of proton exchange membrane (PEM) water electrolysis technology requires decreasing the anode overpotential, where the sluggish multistep oxygen evolution reaction (OER) occurs. This calls for an understanding of the nature of the active OER sites and reaction intermediates, which are still being debated. In this work, we apply synchrotron radiation-based near-ambient pressure X-ray photoelectron and absorption spectroscopies under operando conditions in order to unveil the nature of the reaction intermediates and shed light on the OER mechanism on electrocatalysts most widely used in PEM electrolyzers-electrochemical and thermal iridium oxides. Analysis of the O K-edge and Ir 4f spectra backed by density functional calculations reveals a universal oxygen anion red-ox mechanism regardless of the nature (electrochemical or thermal) of the iridium oxide. The formation of molecular oxygen is considered to occur through a chemical step from the electrophilic OI- species, which itself is formed in an electrochemical step.

2.
J Phys Chem Lett ; 7(16): 3240-5, 2016 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-27477824

RESUMO

Proton exchange membrane (PEM) electrolyzers are attracting an increasing attention as a promising technology for the renewable electricity storage. In this work, near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) is applied for in situ monitoring of the surface state of membrane electrode assemblies with RuO2 and bimetallic Ir0.7Ru0.3O2 anodes during water splitting. We demonstrate that Ir protects Ru from the formation of an unstable hydrous Ru(IV) oxide thereby rendering bimetallic Ru-Ir oxide electrodes with higher corrosion resistance. We further show that the water splitting occurs through a surface Ru(VIII) intermediate, and, contrary to common opinion, the presence of Ir does not hinder its formation.

3.
Phys Chem Chem Phys ; 18(6): 4487-95, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26791108

RESUMO

PEM water electrolysis has recently emerged as one of the most promising technologies for large H2 production from a temporal surplus of renewable electricity; yet it is expensive, partly due to the use of large amounts of Ir present in the anode. Here we report the development and characterization of a cost-effective catalyst, which consists of metallic Ir nanoparticles supported on commercial Ti4O7. The catalyst is synthesized by reducing IrCl3 with NaBH4 in a suspension containing Ti4O7, cetyltrimethylammonium bromide (CTAB) and anhydrous ethanol. No thermal treatment was applied afterwards in order to preserve the high conductivity of Ti4O7 and the metallic properties of Ir. Electron microscopy images show an uniform distribution of mostly single Ir particles covering the electro-ceramic support, although some agglomerates are still present. X-ray diffraction (XRD) analysis reveals a cubic face centered structure of Ir nanoparticles with a crystallite size of ca. 1.8 nm. According to X-ray photoelectron spectroscopy (XPS), the ratio of metallic Ir and Ir-oxide, identified as Ir(3+), is 3 : 1 after the removal of surface contamination. Other surface properties such as primary particle size distribution and surface potential were determined by atomic force microscopy (AFM). Cyclic and linear voltammetric measurements were conducted to study the electrochemical surface and kinetics of Ir-black and Ir/Ti4O7. The developed catalyst outperforms the commercial Ir-black in terms of mass activity for the oxygen evolution reaction (OER) in acid medium by a factor of four, measured at 0.25 V overpotential and room temperature. In general, the Ir/Ti4O7 catalyst exhibits improved kinetics and higher turnover frequency (TOF) compared to Ir-black. The developed Ir/Ti4O7 catalyst allows reducing the precious metal loading in the anode of a PEM electrolyzer by taking advantage of the use of an electro-ceramic support.

4.
Angew Chem Int Ed Engl ; 55(2): 742-6, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26616747

RESUMO

We have developed a highly active nanostructured iridium catalyst for anodes of proton exchange membrane (PEM) electrolysis. Clusters of nanosized crystallites are obtained by reducing surfactant-stabilized IrCl3 in water-free conditions. The catalyst shows a five-fold higher activity towards oxygen evolution reaction (OER) than commercial Ir-black. The improved kinetics of the catalyst are reflected in the high performance of the PEM electrolyzer (1 mg(Ir) cm(-2)), showing an unparalleled low overpotential and negligible degradation. Our results demonstrate that this enhancement cannot be only attributed to increased surface area, but rather to the ligand effect and low coordinate sites resulting in a high turnover frequency (TOF). The catalyst developed herein sets a benchmark and a strategy for the development of ultra-low loading catalyst layers for PEM electrolysis.

5.
Beilstein J Nanotechnol ; 6: 2000-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26665070

RESUMO

We report on the analysis of the performance of each electrode of an air-breathing passive micro-direct methanol fuel cell (µDMFC) during polarization, stabilization and discharge, with CH3OH (2-20 M). A reference electrode with a microcapillary was used for separately measuring the anode the cathode potential. Information about the open circuit potential (OCP), the voltage and the mass transport related phenomena are available. Using 2 M CH3OH, the anode showed mass transport problems. With 4 and 6 M CH3OH both electrodes experience this situation, whereas with 10 and 20 M CH3OH the issue is attributed to the cathode. The stabilization and fuel consumption time depends mainly on the cathode performance, which is very sensitive to fuel crossover. The exposure to 20 M CH3OH produced a loss in performance of more than 75% of the highest power density (16.3 mW·cm(-2)).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...