Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(17): 5503-5516, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37439834

RESUMO

In actinomycetes, the acyl-CoA carboxylases, including the so-called acetyl-CoA carboxylases (ACCs), are biotin-dependent enzymes that exhibit broad substrate specificity and diverse domain and subunit arrangements. Bioinformatic analyses of the Rhodococcus jostii RHA1 genome found that this microorganism contains a vast arrange of putative acyl-CoA carboxylases domains and subunits. From the thirteen putative carboxyltransferase domains, only the carboxyltransferase subunit RO01202 and the carboxyltransferase domain present in the multidomain protein RO04222 are highly similar to well-known essential ACC subunits from other actinobacteria. Mutant strains in each of these genes showed that none of these enzymes is essential for R. jostii growth in rich or in minimal media with high nitrogen concentration, presumably because of their partial overlapping activities. A mutant strain in the ro04222 gene showed a decrease in triacylglycerol and mycolic acids accumulation in rich and minimal medium, highlighting the relevance of this multidomain ACC in the biosynthesis of these lipids. On the other hand, RO01202, a carboxyltransferase domain of a putative ACC complex, whose biotin carboxylase and biotin carboxyl carrier protein domain were not yet identified, was found to be essential for R. jostii growth only in minimal medium with low nitrogen concentration. The results of this study have identified a new component of the TAG-accumulating machinery in the oleaginous R. jostii RHA1. While non-essential for growth and TAG biosynthesis in RHA1, the activity of RO04222 significantly contributes to lipogenesis during single-cell oil production. Furthermore, this study highlights the high functional diversity of ACCs in actinobacteria, particularly regarding their essentiality under different environmental conditions. KEY POINTS: • R. jostii possess a remarkable heterogeneity in their acyl-carboxylase complexes. • RO04222 is a multidomain acetyl-CoA carboxylase involved in lipid accumulation. • RO01202 is an essential carboxyltransferase only at low nitrogen conditions.


Assuntos
Carboxil e Carbamoil Transferases , Rhodococcus , Triglicerídeos/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo , Carboxil e Carbamoil Transferases/metabolismo , Nitrogênio/metabolismo
2.
Sci Rep ; 11(1): 13257, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168231

RESUMO

Phosphatidic acid phosphatase (PAP) catalyzes the dephosphorylation of phosphatidic acid (PA) yielding diacylglycerol (DAG), the lipid precursor for triacylglycerol (TAG) biosynthesis. PAP activity has a key role in the regulation of PA flux towards TAG or glycerophospholipid synthesis. In this work we have characterized two Mycobacterium smegmatis genes encoding for functional PAP proteins. Disruption of both genes provoked a sharp reduction in de novo TAG biosynthesis in early growth phase cultures under stress conditions. In vivo labeling experiments demonstrated that TAG biosynthesis was restored in the ∆PAP mutant when bacteria reached exponential growth phase, with a concomitant reduction of phospholipid synthesis. In addition, comparative lipidomic analysis showed that the ∆PAP strain had increased levels of odd chain fatty acids esterified into TAGs, suggesting that the absence of PAP activity triggered other rearrangements of lipid metabolism, like phospholipid recycling, in order to maintain the wild type levels of TAG. Finally, the lipid changes observed in the ∆PAP mutant led to defective biofilm formation. Understanding the interaction between TAG synthesis and the lipid composition of mycobacterial cell envelope is a key step to better understand how lipid homeostasis is regulated during Mycobacterium tuberculosis infection.


Assuntos
Mycobacterium smegmatis/metabolismo , Triglicerídeos/biossíntese , Biofilmes , Escherichia coli/metabolismo , Metabolismo dos Lipídeos , Mutação , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/genética , Fosfatidato Fosfatase/genética , Fosfatidato Fosfatase/metabolismo , Ácidos Fosfatídicos/metabolismo , Filogenia
3.
Front Microbiol ; 11: 586285, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193236

RESUMO

Mycobacterium tuberculosis, the etiologic agent of human tuberculosis, is the world's leading cause of death from an infectious disease. One of the main features of this pathogen is the complex and dynamic lipid composition of the cell envelope, which adapts to the variable host environment and defines the fate of infection by actively interacting with and modulating immune responses. However, while much has been learned about the enzymes of the numerous lipid pathways, little knowledge is available regarding the proteins and metabolic signals regulating lipid metabolism during M. tuberculosis infection. In this work, we constructed and characterized a FasR-deficient mutant in M. tuberculosis and demonstrated that FasR positively regulates fas and acpS expression. Lipidomic analysis of the wild type and mutant strains revealed complete rearrangement of most lipid components of the cell envelope, with phospholipids, mycolic acids, sulfolipids, and phthiocerol dimycocerosates relative abundance severely altered. As a consequence, replication of the mutant strain was impaired in macrophages leading to reduced virulence in a mouse model of infection. Moreover, we show that the fasR mutant resides in acidified cellular compartments, suggesting that the lipid perturbation caused by the mutation prevented M. tuberculosis inhibition of phagolysosome maturation. This study identified FasR as a novel factor involved in regulation of mycobacterial virulence and provides evidence for the essential role that modulation of lipid homeostasis plays in the outcome of M. tuberculosis infection.

5.
Nat Commun ; 11(1): 3703, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32710080

RESUMO

Mycobacterium tuberculosis is a pathogen with a unique cell envelope including very long fatty acids, implicated in bacterial resistance and host immune modulation. FasR is a TetR-like transcriptional activator that plays a central role in sensing mycobacterial long-chain fatty acids and regulating lipid biosynthesis. Here we disclose crystal structures of M. tuberculosis FasR in complex with acyl effector ligands and with DNA, uncovering its molecular sensory and switching mechanisms. A long tunnel traverses the entire effector-binding domain, enabling long fatty acyl effectors to bind. Only when the tunnel is entirely occupied, the protein dimer adopts a rigid configuration with its DNA-binding domains in an open state, leading to DNA dissociation. The protein-folding hydrophobic core connects the two domains, and is completed into a continuous spine when the effector binds. Such a transmission spine is conserved in a large number of TetR-like regulators, offering insight into effector-triggered allosteric functional control.


Assuntos
Acil Coenzima A/química , Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Mycobacterium tuberculosis/metabolismo , Fatores de Transcrição/química , Acil Coenzima A/metabolismo , Sítio Alostérico , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Cristalografia por Raios X , DNA Bacteriano/química , Proteínas de Ligação a DNA/metabolismo , Ácidos Graxos/metabolismo , Ligantes , Modelos Moleculares , Conformação Proteica , Fatores de Transcrição/metabolismo
6.
Vet Microbiol ; 239: 108482, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31759775

RESUMO

Mycobacterium bovis (M. bovis) is the causative agent of bovine tuberculosis, a chronic infectious disease that can affect cattle, other domesticated species, wild animals and humans. This disease produces important economic losses worldwide. Two M. bovis strains (04-303 and 534) have been isolated in Argentina. Whereas the 04-303 strain was isolated from a wild boar, the 534 strain was obtained from cattle. In a previous study, six weeks after infection, the 04-303 strain induced 100% mortality in mice. By contrast, mice infected with the 534 strain survived, with limited tissue damage, after four months. In this study we compared all predictive proteins encoded in both M. bovis genomes. The comparative analysis revealed 141 polymorphic proteins between both strains. From these proteins, nine virulence proteins showed polymorphisms in 04-303, whereas five did it in the 534 strain. Remarkably, both strains contained a high level of polymorphism in proteins related to phthiocerol dimycocerosate (PDIM) synthesis or transport. Further experimental evidence indicated that only mutations in the 534 strain have an impact on PDIM synthesis. The observed reduction in PDIM content in the 534 strain, together with its low capacity to induce phagosome arrest, may be associated with the reported deficiency of this strain to replicate and survive inside bovine macrophages. The findings of this study could contribute to a better understanding of pathogenicity and virulence aspects of M. bovis, which is essential for further studies aiming at developing new vaccines and diagnostic techniques for bovines.


Assuntos
Mycobacterium bovis/genética , Mycobacterium bovis/patogenicidade , Tuberculose/microbiologia , Virulência/genética , Animais , Bovinos , Camundongos , Mutação , Mycobacterium bovis/classificação , Análise de Sobrevida , Sus scrofa/microbiologia , Tuberculose/mortalidade , Tuberculose Bovina/microbiologia
7.
Front Immunol ; 9: 459, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593722

RESUMO

The ability of Mycobacterium tuberculosis (Mtb) to persist in its human host relies on numerous immune evasion strategies, such as the deregulation of the lipid metabolism leading to the formation of foamy macrophages (FM). Yet, the specific host factors leading to the foamy phenotype of Mtb-infected macrophages remain unknown. Herein, we aimed to address whether host cytokines contribute to FM formation in the context of Mtb infection. Our approach is based on the use of an acellular fraction of tuberculous pleural effusions (TB-PE) as a physiological source of local factors released during Mtb infection. We found that TB-PE induced FM differentiation as observed by the increase in lipid bodies, intracellular cholesterol, and expression of the scavenger receptor CD36, as well as the enzyme acyl CoA:cholesterol acyl transferase (ACAT). Importantly, interleukin-10 (IL-10) depletion from TB-PE prevented the augmentation of all these parameters. Moreover, we observed a positive correlation between the levels of IL-10 and the number of lipid-laden CD14+ cells among the pleural cells in TB patients, demonstrating that FM differentiation occurs within the pleural environment. Downstream of IL-10 signaling, we noticed that the transcription factor signal transducer and activator of transcription 3 was activated by TB-PE, and its chemical inhibition prevented the accumulation of lipid bodies and ACAT expression in macrophages. In terms of the host immune response, TB-PE-treated macrophages displayed immunosuppressive properties and bore higher bacillary loads. Finally, we confirmed our results using bone marrow-derived macrophage from IL-10-/- mice demonstrating that IL-10 deficiency partially prevented foamy phenotype induction after Mtb lipids exposure. In conclusion, our results evidence a role of IL-10 in promoting the differentiation of FM in the context of Mtb infection, contributing to our understanding of how alterations of the host metabolic factors may favor pathogen persistence.


Assuntos
Acetil-CoA C-Acetiltransferase/imunologia , Regulação Enzimológica da Expressão Gênica/imunologia , Interleucina-10/imunologia , Mycobacterium tuberculosis/imunologia , Derrame Pleural/imunologia , Fator de Transcrição STAT3/imunologia , Esterol O-Aciltransferase , Tuberculose Pleural/imunologia , Regulação para Cima/imunologia , Acetil-CoA C-Acetiltransferase/genética , Animais , Feminino , Células Espumosas , Humanos , Interleucina-10/genética , Masculino , Camundongos , Camundongos Knockout , Mycobacterium tuberculosis/genética , Derrame Pleural/genética , Derrame Pleural/patologia , Fator de Transcrição STAT3/genética , Tuberculose Pleural/genética , Tuberculose Pleural/patologia
8.
Curr Opin Microbiol ; 41: 36-42, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29190491

RESUMO

The complex lipids present in the cell wall of Mycobacterium tuberculosis (Mtb) act as major effector molecules that actively interact with the host, modulating its metabolism and stimulating the immune response, which in turn affects the physiology of both, the host cell and the bacilli. Lipids from the host are also nutrient sources for the pathogen and define the fate of the infection by modulating lipid homeostasis. Although new technologies and experimental models of infection have greatly helped understanding the different aspects of the host-pathogen interactions at the lipid level, the impact of this interaction in the Mtb lipid regulation is still incipient, mainly because of the low background knowledge in this area of research.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Metabolismo dos Lipídeos/fisiologia , Mycobacterium tuberculosis/metabolismo , Animais , Parede Celular/química , Parede Celular/metabolismo , Homeostase , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Metabolismo dos Lipídeos/genética , Macrófagos/imunologia , Macrófagos/microbiologia , Redes e Vias Metabólicas/fisiologia , Camundongos , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Tuberculose/imunologia , Tuberculose/microbiologia , Tuberculose/terapia
9.
Open Biol ; 7(7)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28724694

RESUMO

One of the dominant features of the biology of Mycobacterium tuberculosis, and other mycobacteria, is the mycobacterial cell envelope with its exceptional complex composition. Mycolic acids are major and very specific components of the cell envelope and play a key role in its architecture and impermeability. Biosynthesis of mycolic acid (MA) precursors requires two types of fatty acid synthases, FAS I and FAS II, which should work in concert in order to keep lipid homeostasis tightly regulated. Both FAS systems are regulated at their transcriptional level by specific regulatory proteins. FasR regulates components of the FAS I system, whereas MabR and FadR regulate components of the FAS II system. In this article, by constructing a tight mabR conditional mutant in Mycobacterium smegmatis mc2155, we demonstrated that sub-physiological levels of MabR lead to a downregulation of the fasII genes, inferring that this protein is a transcriptional activator of the FAS II system. In vivo labelling experiments and lipidomic studies carried out in the wild-type and the mabR conditional mutant demonstrated that under conditions of reduced levels of MabR, there is a clear inhibition of biosynthesis of MAs, with a concomitant change in their relative composition, and of other MA-containing molecules. These studies also demonstrated a change in the phospholipid composition of the membrane of the mutant strain, with a significant increase of phosphatidylinositol. Gel shift assays carried out with MabR and PfasII as a probe in the presence of different chain-length acyl-CoAs strongly suggest that molecules longer than C18 can be sensed by MabR to modulate its affinity for the operator sequences that it recognizes, and in that way switch on or off the MabR-dependent promoter. Finally, we demonstrated the direct role of MabR in the upregulation of the fasII operon genes after isoniazid treatment.


Assuntos
Acil Coenzima A/metabolismo , Mycobacterium/metabolismo , Ácidos Micólicos/metabolismo , Cromatografia Líquida , Regulação Bacteriana da Expressão Gênica , Ordem dos Genes , Loci Gênicos , Metabolismo dos Lipídeos , Espectrometria de Massas , Mutação , Mycobacterium/genética , Óperon , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/metabolismo , Transcrição Gênica
10.
FEBS J ; 284(7): 1110-1125, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28222482

RESUMO

Mycobacterium tuberculosis produces a large number of structurally diverse lipids that have been implicated in the pathogenicity, persistence and antibiotic resistance of this organism. Most building blocks involved in the biosynthesis of all these lipids are generated by acyl-CoA carboxylases whose subunit composition and physiological roles have not yet been clearly established. Inconclusive data in the literature refer to the exact protein composition and substrate specificity of the enzyme complex that produces the long-chain α-carboxy-acyl-CoAs, which are substrates involved in the last step of condensation mediated by the polyketide synthase 13 to synthesize mature mycolic acids. Here we have successfully reconstituted the long-chain acyl-CoA carboxylase (LCC) complex from its purified components, the α subunit (AccA3), the ε subunit (AccE5) and the two ß subunits (AccD4 and AccD5), and demonstrated that the four subunits are essential for its activity. Furthermore, we also showed by substrate competition experiments and the use of a specific inhibitor that the AccD5 subunit's role in the carboxylation of the long acyl-CoAs, as part of the LCC complex, was structural rather than catalytic. Moreover, AccD5 was also able to carboxylate its natural substrates, acetyl-CoA and propionyl-CoA, in the context of the LCC enzyme complex. Thus, the supercomplex formed by these four subunits has the potential to generate the main substrates, malonyl-CoA, methylmalonyl-CoA and α-carboxy-C24-26 -CoA, used as condensing units for the biosynthesis of all the lipids present in this pathogen.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono-Carbono Ligases/metabolismo , Mycobacterium tuberculosis/metabolismo , Policetídeo Sintases/metabolismo , Subunidades Proteicas/metabolismo , Acetilcoenzima A/metabolismo , Acil Coenzima A/metabolismo , Proteínas de Bactérias/genética , Carbono-Carbono Ligases/genética , Clonagem Molecular , Ensaios Enzimáticos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Cinética , Malonil Coenzima A/metabolismo , Mycobacterium tuberculosis/genética , Ácidos Micólicos/metabolismo , Policetídeo Sintases/genética , Engenharia de Proteínas , Subunidades Proteicas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
11.
Open Biol ; 7(2)2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28228470

RESUMO

Unlike most bacteria, mycobacteria rely on the multi-domain enzyme eukaryote-like fatty acid synthase I (FAS I) to make fatty acids de novo. These metabolites are precursors of the biosynthesis of most of the lipids present both in the complex mycobacteria cell wall and in the storage lipids inside the cell. In order to study the role of the type I FAS system in Mycobacterium lipid metabolism in vivo, we constructed a conditional mutant in the fas-acpS operon of Mycobacterium smegmatis and analysed in detail the impact of reduced de novo fatty acid biosynthesis on the global architecture of the cell envelope. As expected, the mutant exhibited growth defect in the non-permissive condition that correlated well with the lower expression of fas-acpS and the concomitant reduction of FAS I, confirming that FAS I is essential for survival. The reduction observed in FAS I provoked an accumulation of its substrates, acetyl-CoA and malonyl-CoA, and a strong reduction of C12 to C18 acyl-CoAs, but not of long-chain acyl-CoAs (C19 to C24). The most intriguing result was the ability of the mutant to keep synthesizing mycolic acids when fatty acid biosynthesis was impaired. A detailed comparative lipidomic analysis showed that although reduced FAS I levels had a strong impact on fatty acid and phospholipid biosynthesis, mycolic acids were still being synthesized in the mutant, although with a different relative species distribution. However, when triacylglycerol degradation was inhibited, mycolic acid biosynthesis was significantly reduced, suggesting that storage lipids could be an intracellular reservoir of fatty acids for the biosynthesis of complex lipids in mycobacteria. Understanding the interaction between FAS I and the metabolic pathways that rely on FAS I products is a key step to better understand how lipid homeostasis is regulated in this microorganism and how this regulation could play a role during infection in pathogenic mycobacteria.


Assuntos
Ácido Graxo Sintases/genética , Metabolismo dos Lipídeos , Mycobacterium smegmatis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/biossíntese , Regulação Bacteriana da Expressão Gênica , Mutação , Mycobacterium smegmatis/genética , Óperon
12.
Mol Microbiol ; 103(2): 366-385, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27786393

RESUMO

The regulatory mechanisms involved in lipogenesis and triacylglycerol (TAG) accumulation are largely unknown in oleaginous rhodococci. In this study a regulatory protein (here called NlpR: Nitrogen lipid Regulator), which contributes to the modulation of nitrogen metabolism, lipogenesis and triacylglycerol accumulation in oleaginous rhodococci was identified. Under nitrogen deprivation conditions, in which TAG accumulation is stimulated, the nlpR gene was significantly upregulated, whereas a significant decrease of its expression and TAG accumulation occurred when cerulenin was added. The nlpR disruption negatively affected the nitrate/nitrite reduction as well as lipid biosynthesis under nitrogen-limiting conditions. In contrast, its overexpression increased TAG production during cultivation of cells in nitrogen-rich media. A putative 'NlpR-binding motif' upstream of several genes related to nitrogen and lipid metabolisms was found. The nlpR disruption in RHA1 strain led to a reduced transcription of genes involved in nitrate/nitrite assimilation, as well as in fatty acid and TAG biosynthesis. Purified NlpR was able to bind to narK, nirD, fasI, plsC and atf3 promoter regions. It was suggested that NlpR acts as a pleiotropic transcriptional regulator by activating of nitrate/nitrite assimilation genes and others genes involved in fatty acid and TAG biosynthesis, in response to nitrogen deprivation.


Assuntos
Nitrogênio/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo , Fatores de Transcrição/metabolismo , Triglicerídeos/metabolismo , Proteínas de Bactérias/metabolismo , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Lipogênese/fisiologia , Nitritos/metabolismo , Fatores de Transcrição/genética
14.
Appl Microbiol Biotechnol ; 100(16): 7239-48, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27270600

RESUMO

Acyl-CoAs are crucial compounds involved in essential metabolic pathways such as the Krebs cycle and lipid, carbohydrate, and amino acid metabolisms, and they are also key signal molecules involved in the transcriptional regulation of lipid biosynthesis in many organisms. In this study, we took advantage of the high selectivity of mass spectrometry and developed an ion-pairing reverse-phase high-pressure liquid chromatography electrospray ionization high-resolution mass spectrometry (IP-RP-HPLC/ESI-HRMS) method to carry on a comprehensive analytical determination of the wide range of fatty acyl-CoAs present in actinomycetes. The advantage of using a QTOF spectrometer resides in the excellent mass accuracy over a wide dynamic range and measurements of the true isotope pattern that can be used for molecular formula elucidation of unknown analytes. As a proof of concept, we used this assay to determine the composition of the fatty acyl-CoA pools in Mycobacterium, Streptomyces, and Corynebacterium species, revealing an extraordinary difference in fatty acyl-CoA amounts and species distribution between the three genera and between the two species of mycobacteria analyzed, including the presence of different chain-length carboxy-acyl-CoAs, key substrates of mycolic acid biosynthesis. The method was also used to analyze the impact of two fatty acid synthase inhibitors on the acyl-CoA profile of Mycobacterium smegmatis, which showed some unexpected low levels of C24 acyl-CoAs in the isoniazid-treated cells. This robust, sensitive, and reliable method should be broadly applicable in the studies of the wide range of bacteria metabolisms in which acyl-CoA molecules participate.


Assuntos
Actinobacteria/metabolismo , Acil Coenzima A/metabolismo , Corynebacterium/metabolismo , Ácido Graxo Sintases/antagonistas & inibidores , Mycobacterium smegmatis/metabolismo , Streptomyces/metabolismo , Acil Coenzima A/análise , Cromatografia Líquida de Alta Pressão/métodos , Inibidores da Síntese de Ácidos Graxos/farmacologia , Isoniazida/farmacologia , Metabolismo dos Lipídeos/fisiologia , Espectrometria de Massas por Ionização por Electrospray
15.
PLoS One ; 9(6): e99853, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24950047

RESUMO

Mycobacteria contain a large variety of fatty acids which are used for the biosynthesis of several complex cell wall lipids that have been implicated in the ability of the organism to resist host defenses. The building blocks for the biosynthesis of all these lipids are provided by a fairly complex set of acyl-CoA carboxylases (ACCases) whose subunit composition and roles within these organisms have not yet been clearly established. Previous biochemical and structural studies provided strong evidences that ACCase 5 from Mycobacterium tuberculosis is formed by the AccA3, AccD5 and AccE5 subunits and that this enzyme complex carboxylates acetyl-CoA and propionyl-CoA with a clear substrate preference for the latest. In this work we used a genetic approach to unambiguously demonstrate that the products of both accD5 and accE5 genes are essential for the viability of Mycobacterium smegmatis. By obtaining a conditional mutant on the accD5-accE5 operon, we also demonstrated that the main physiological role of this enzyme complex was to provide the substrates for fatty acid and mycolic acid biosynthesis. Furthermore, enzymatic and biochemical analysis of the conditional mutant provided strong evidences supporting the notion that AccD5 and/or AccE5 have an additional role in the carboxylation of long chain acyl-CoA prior to mycolic acid condensation. These studies represent a significant step towards a better understanding of the roles of ACCases in mycobacteria and confirm ACCase 5 as an interesting target for the development of new antimycobacterial drugs.


Assuntos
Carbono-Carbono Ligases/genética , Parede Celular/genética , Lipídeos/biossíntese , Mycobacterium smegmatis/genética , Acetilcoenzima A , Acil Coenzima A , Sequência de Aminoácidos , Parede Celular/metabolismo , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Lipogênese , Mycobacterium smegmatis/metabolismo , Ácidos Micólicos/metabolismo
16.
FEMS Microbiol Rev ; 35(3): 475-97, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21204864

RESUMO

All organisms that produce fatty acids do so via a repeated cycle of reactions. In mammals and other animals, these reactions are catalyzed by a type I fatty acid synthase (FAS), a large multifunctional protein to which the growing chain is covalently attached. In contrast, most bacteria (and plants) contain a type II system in which each reaction is catalyzed by a discrete protein. The pathway of fatty acid biosynthesis in Escherichia coli is well established and has provided a foundation for elucidating the type II FAS pathways in other bacteria (White et al., 2005). However, fatty acid biosynthesis is more diverse in the phylum Actinobacteria: Mycobacterium, possess both FAS systems while Streptomyces species have only the multienzyme FAS II system and Corynebacterium species exclusively FAS I. In this review, we present an overview of the genome organization, biochemical properties and physiological relevance of the two FAS systems in the three genera of actinomycetes mentioned above. We also address in detail the biochemical and structural properties of the acyl-CoA carboxylases (ACCases) that catalyzes the first committed step of fatty acid synthesis in actinomycetes, and discuss the molecular bases of their substrate specificity and the structure-based identification of new ACCase inhibitors with antimycobacterial properties.


Assuntos
Actinobacteria/metabolismo , Ácidos Graxos/biossíntese , Actinobacteria/química , Actinobacteria/enzimologia , Actinobacteria/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Ácido Graxo Sintase Tipo II/química , Ácido Graxo Sintase Tipo II/genética , Ácido Graxo Sintase Tipo II/metabolismo
17.
Microbiology (Reading) ; 155(Pt 8): 2664-2675, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19423629

RESUMO

Mycolic acids are essential for the survival, virulence and antibiotic resistance of the human pathogen Mycobacterium tuberculosis. Inhibitors of mycolic acid biosynthesis, such as isoniazid and ethionamide, have been used as efficient drugs for the treatment of tuberculosis. However, the increase in cases of multidrug-resistant tuberculosis has prompted a search for new targets and agents that could also affect synthesis of mycolic acids. In mycobacteria, the acyl-CoA carboxylases (ACCases) provide the building blocks for de novo fatty acid biosynthesis by fatty acid synthase (FAS) I and for the elongation of FAS I products by the FAS II complex to produce meromycolic acids. By generating a conditional mutant in the accD6 gene of Mycobacterium smegmatis, we demonstrated that AccD6 is the essential carboxyltransferase component of the ACCase 6 enzyme complex implicated in the biosynthesis of malonyl-CoA, the substrate of the two FAS enzymes of Mycobacterium species. Based on the conserved structure of the AccD5 and AccD6 active sites we screened several inhibitors of AccD5 as potential inhibitors of AccD6 and found that the ligand NCI-172033 was capable of inhibiting AccD6 with an IC(50) of 8 microM. The compound showed bactericidal activity against several pathogenic Mycobacterium species by producing a strong inhibition of both fatty acid and mycolic acid biosynthesis at minimal inhibitory concentrations. Overexpression of accD6 in M. smegmatis conferred resistance to NCI-172033, confirming AccD6 as the main target of the inhibitor. These results define the biological role of a key ACCase in the biosynthesis of membrane and cell envelope fatty acids, and provide a new target, AccD6, for rational development of novel anti-mycobacterial drugs.


Assuntos
Carbono-Carbono Ligases/metabolismo , Mycobacterium smegmatis/enzimologia , Ácidos Micólicos/metabolismo , Tuberculose Pulmonar/microbiologia , Anti-Infecciosos/administração & dosagem , Vias Biossintéticas/efeitos dos fármacos , Carbono-Carbono Ligases/antagonistas & inibidores , Carbono-Carbono Ligases/genética , Clorobenzenos/administração & dosagem , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Fenóis/administração & dosagem
18.
Proc Natl Acad Sci U S A ; 103(9): 3072-7, 2006 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-16492739

RESUMO

Mycolic acids and multimethyl-branched fatty acids are found uniquely in the cell envelope of pathogenic mycobacteria. These unusually long fatty acids are essential for the survival, virulence, and antibiotic resistance of Mycobacterium tuberculosis. Acyl-CoA carboxylases (ACCases) commit acyl-CoAs to the biosynthesis of these unique fatty acids. Unlike other organisms such as Escherichia coli or humans that have only one or two ACCases, M. tuberculosis contains six ACCase carboxyltransferase domains, AccD1-6, whose specific roles in the pathogen are not well defined. Previous studies indicate that AccD4, AccD5, and AccD6 are important for cell envelope lipid biosynthesis and that its disruption leads to pathogen death. We have determined the 2.9-Angstroms crystal structure of AccD5, whose sequence, structure, and active site are highly conserved with respect to the carboxyltransferase domain of the Streptomyces coelicolor propionyl-CoA carboxylase. Contrary to the previous proposal that AccD4-5 accept long-chain acyl-CoAs as their substrates, both crystal structure and kinetic assay indicate that AccD5 prefers propionyl-CoA as its substrate and produces methylmalonyl-CoA, the substrate for the biosyntheses of multimethyl-branched fatty acids such as mycocerosic, phthioceranic, hydroxyphthioceranic, mycosanoic, and mycolipenic acids. Extensive in silico screening of National Cancer Institute compounds and the University of California, Irvine, ChemDB database resulted in the identification of one inhibitor with a K(i) of 13.1 microM. Our results pave the way toward understanding the biological roles of key ACCases that commit acyl-CoAs to the biosynthesis of cell envelope fatty acids, in addition to providing a target for structure-based development of antituberculosis therapeutics.


Assuntos
Carbono-Carbono Ligases/antagonistas & inibidores , Carbono-Carbono Ligases/química , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/enzimologia , Antituberculosos/química , Antituberculosos/farmacologia , Sítios de Ligação , Carbono-Carbono Ligases/metabolismo , Biologia Computacional , Ligantes , Modelos Moleculares , Estrutura Quaternária de Proteína , Especificidade por Substrato
19.
J Bacteriol ; 188(2): 477-86, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16385038

RESUMO

Pathogenic mycobacteria contain a variety of unique fatty acids that have methyl branches at an even-numbered position at the carboxyl end and a long n-aliphatic chain. One such group of acids, called mycocerosic acids, is found uniquely in the cell wall of pathogenic mycobacteria, and their biosynthesis is essential for growth and pathogenesis. Therefore, the biosynthetic pathway of the unique precursor of such lipids, methylmalonyl coenzyme A (CoA), represents an attractive target for developing new antituberculous drugs. Heterologous protein expression and purification of the individual subunits allowed the successful reconstitution of an essential acyl-CoA carboxylase from Mycobacterium tuberculosis, whose main role appears to be the synthesis of methylmalonyl-CoA. The enzyme complex was reconstituted from the alpha biotinylated subunit AccA3, the carboxyltransferase beta subunit AccD5, and the epsilon subunit AccE5 (Rv3281). The kinetic properties of this enzyme showed a clear substrate preference for propionyl-CoA compared with acetyl-CoA (specificity constant fivefold higher), indicating that the main physiological role of this enzyme complex is to generate methylmalonyl-CoA for the biosynthesis of branched-chain fatty acids. The alpha and beta subunits are capable of forming a stable alpha6-beta6 subcomplex but with very low specific activity. The addition of the epsilon subunit, which binds tightly to the alpha-beta subcomplex, is essential for gaining maximal enzyme activity.


Assuntos
Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genes Bacterianos , Mycobacterium tuberculosis/enzimologia , Acil Coenzima A/química , Sequência de Aminoácidos , Ácidos Graxos/metabolismo , Cinética , Dados de Sequência Molecular , Alinhamento de Sequência
20.
Transgenic Res ; 14(4): 429-40, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16201409

RESUMO

Homeodomain-leucine zipper proteins constitute a family of transcription factors found only in plants. Hahb-4 is a member of Helianthus annuus (sunflower) subfamily I. It is regulated at the transcriptional level by water availability and abscisic acid. In order to establish if this gene plays a functional role in drought responses, transgenic Arabidopsis thaliana plants that overexpress Hahb-4 under the control of the 35S Cauliflower Mosaic Virus promoter were obtained. Transformed plants show a specific phenotype: they develop shorter stems and internodes, rounder leaves and more compact inflorescences than their non-transformed counterparts. Shorter stems and internodes are due to a lower rate in cell elongation rather than to a stop in cell division. Transgenic plants were more tolerant to water stress conditions, showing improved development, a healthier appearance and higher survival rates than wild-type plants. Indeed, either under normal or drought conditions, they produce approximately the same seed weight per plant as wild-type plants under normal growth conditions. Plants transformed with a construct that bears the Hahb-4 promoter fused to gusA show reporter gene expression in defined cell-types and developmental stages and are induced by drought and abscisic acid. Since Hahb-4 is a transcription factor, we propose that it may participate in the regulation of the expression of genes involved in developmental responses of plants to desiccation.


Assuntos
Arabidopsis/genética , Genes Homeobox/fisiologia , Zíper de Leucina/genética , Reguladores de Crescimento de Plantas/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , DNA de Plantas/isolamento & purificação , Desastres , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Helianthus/genética , Proteínas de Homeodomínio , Fenótipo , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas , RNA de Plantas/isolamento & purificação , RNA de Plantas/metabolismo , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...