Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
AJNR Am J Neuroradiol ; 40(11): 1842-1849, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31694821

RESUMO

BACKGROUND AND PURPOSE: Imaging CBF is important for managing pediatric moyamoya. Traditional arterial spin-labeling MR imaging detects delayed transit thorough diseased arteries but is inaccurate for measuring perfusion because of these delays. Velocity-selective arterial spin-labeling is insensitive to transit delay and well-suited for imaging Moyamoya perfusion. This study assesses the accuracy of a combined velocity-selective arterial spin-labeling and traditional pulsed arterial spin-labeling CBF approach in pediatric moyamoya, with comparison to blood flow patterns on conventional angiography. MATERIALS AND METHODS: Twenty-two neurologically stable pediatric patients with moyamoya and 5 asymptomatic siblings without frank moyamoya were imaged with velocity-selective arterial spin-labeling, pulsed arterial spin-labeling, and DSA (patients). Qualitative comparison was performed, followed by a systematic comparison using ASPECTS-based scoring. Quantitative pulsed arterial spin-labeling CBF and velocity-selective arterial spin-labeling CBF for the middle cerebral artery, anterior cerebral artery, and posterior cerebral artery territories were also compared. RESULTS: Qualitatively, velocity-selective arterial spin-labeling perfusion maps reflect the DSA parenchymal phase, regardless of postinjection timing. Conversely, pulsed arterial spin-labeling maps reflect the DSA appearance at postinjection times closer to the arterial spin-labeling postlabeling delay, regardless of vascular phase. ASPECTS comparison showed excellent agreement (88%, κ = 0.77, P < .001) between arterial spin-labeling and DSA, suggesting velocity-selective arterial spin-labeling and pulsed arterial spin-labeling capture key perfusion and transit delay information, respectively. CBF coefficient of variation, a marker of perfusion variability, was similar for velocity-selective arterial spin-labeling in patient regions of delayed-but-preserved perfusion compared to healthy asymptomatic sibling regions (coefficient of variation = 0.30 versus 0.26, respectively, Δcoefficient of variation = 0.04), but it was significantly different for pulsed arterial spin-labeling (coefficient of variation = 0.64 versus 0.34, Δcoefficient of variation = 0.30, P < .001). CONCLUSIONS: Velocity-selective arterial spin-labeling offers a powerful approach to image perfusion in pediatric moyamoya due to transit delay insensitivity. Coupled with pulsed arterial spin-labeling for transit delay information, a volumetric MR imaging approach capturing key DSA information is introduced.


Assuntos
Angiografia Cerebral/métodos , Circulação Cerebrovascular/fisiologia , Doença de Moyamoya/diagnóstico por imagem , Neuroimagem/métodos , Imagem de Perfusão/métodos , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Angiografia por Ressonância Magnética , Masculino , Artéria Cerebral Média/diagnóstico por imagem , Doença de Moyamoya/fisiopatologia , Intensificação de Imagem Radiográfica , Marcadores de Spin , Técnica de Subtração
2.
Neuroimage Clin ; 19: 360-373, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30013919

RESUMO

Background: Elucidating developmental trajectories of white matter (WM) microstructure is critically important for understanding normal development and regional vulnerabilities in several brain disorders. Diffusion Weighted Imaging (DWI) is currently the method of choice for in-vivo white matter assessment. A majority of neonatal studies use the standard Diffusion Tensor Imaging (DTI) model although more advanced models such as the Neurite Orientation Dispersion and Density Imaging (NODDI) model and the Gaussian Mixture Model (GMM) have been used in adult population. In this study, we compare the ability of these three diffusion models to detect regional white matter maturation in typically developing control (TDC) neonates and regional abnormalities in neonates with congenital heart disease (CHD). Methods: Multiple b-value diffusion Magnetic Resonance Imaging (dMRI) data were acquired from TDC neonates (N = 16) at 38 to 47 gestational weeks (GW) and CHD neonates (N = 19) aged 37 weeks to 41 weeks. Measures calculated from the diffusion signal included not only Mean Diffusivity (MD) and Fractional Anisotropy (FA) derived from the standard DTI model, but also three advanced diffusion measures, namely, the fiber Orientation Dispersion Index (ODI), the isotropic volume fraction (Viso), and the intracellular volume fraction (Vic) derived from the NODDI model. Further, we used two novel measures from a non-parametric GMM, namely the Return-to-Origin Probability (RTOP) and Return-to-Axis Probability (RTAP), which are sensitive to axonal/cellular volume and density respectively. Using atlas-based registration, 22 white matter regions (6 projection, 4 association, and 1 callosal pathways bilaterally in each hemisphere) were selected and the mean value of all 7 measures were calculated in each region. These values were used as dependent variables, with GW as the independent variable in a linear regression model. Finally, we compared CHD and TDC groups on these measures in each ROI after removing age-related trends from both the groups. Results: Linear analysis in the TDC population revealed significant correlations with GW (age) in 12 projection pathways for MD, Vic, RTAP, and 11 pathways for RTOP. Several association pathways were also significantly correlated with GW for MD, Vic, RTAP, and RTOP. The right callosal pathway was significantly correlated with GW for Vic. Consistent with the pathophysiology of altered development in CHD, diffusion measures demonstrated differences in the association pathways involved in language systems, namely the Uncinate Fasciculus (UF), the Inferior Fronto-occipital Fasciculus (IFOF), and the Superior Longitudinal Fasciculus (SLF). Overall, the group comparison between CHD and TDC revealed lower FA, Vic, RTAP, and RTOP for CHD bilaterally in the a) UF, b) Corpus Callosum (CC), and c) Superior Fronto-Occipital Fasciculus (SFOF). Moreover, FA was lower for CHD in the a) left SLF, b) bilateral Anterior Corona Radiata (ACR) and left Retrolenticular part of the Internal Capsule (RIC). Vic was also lower for CHD in the left Posterior Limb of the Internal Capsule (PLIC). ODI was higher for CHD in the left CC. RTAP was lower for CHD in the left IFOF, while RTOP was lower in CHD in the: a) left ACR, b) left IFOF and c) right Anterior Limb of the Internal Capsule (ALIC). Conclusion: In this study, all three methods revealed the expected changes in the WM regions during the early postnatal weeks; however, GMM outperformed DTI and NODDI as it showed significantly larger effect sizes while detecting differences between the TDC and CHD neonates. Future studies based on a larger sample are needed to confirm these results and to explore clinical correlates.


Assuntos
Encéfalo/diagnóstico por imagem , Cardiopatias Congênitas/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Estudos Transversais , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Recém-Nascido , Masculino , Rede Nervosa/diagnóstico por imagem
3.
AJNR Am J Neuroradiol ; 38(7): 1449-1455, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28522661

RESUMO

BACKGROUND AND PURPOSE: Aberrant gyral folding is a key feature in the diagnosis of many cerebral malformations. However, in fetal life, it is particularly challenging to confidently diagnose aberrant folding because of the rapid spatiotemporal changes of gyral development. Currently, there is no resource to measure how an individual fetal brain compares with normal spatiotemporal variations. In this study, we assessed the potential for automatic analysis of early sulcal patterns to detect individual fetal brains with cerebral abnormalities. MATERIALS AND METHODS: Triplane MR images were aligned to create a motion-corrected volume for each individual fetal brain, and cortical plate surfaces were extracted. Sulcal basins were automatically identified on the cortical plate surface and compared with a combined set generated from 9 normal fetal brain templates. Sulcal pattern similarities to the templates were quantified by using multivariate geometric features and intersulcal relationships for 14 normal fetal brains and 5 fetal brains that were proved to be abnormal on postnatal MR imaging. Results were compared with the gyrification index. RESULTS: Significantly reduced sulcal pattern similarities to normal templates were found in all abnormal individual fetuses compared with normal fetuses (mean similarity [normal, abnormal], left: 0.818, 0.752; P < .001; right: 0.810, 0.753; P < .01). Altered location and depth patterns of sulcal basins were the primary distinguishing features. The gyrification index was not significantly different between the normal and abnormal groups. CONCLUSIONS: Automated analysis of interrelated patterning of early primary sulci could outperform the traditional gyrification index and has the potential to quantitatively detect individual fetuses with emerging abnormal sulcal patterns.


Assuntos
Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Adulto , Automação , Córtex Cerebral/anormalidades , Córtex Cerebral/diagnóstico por imagem , Estudos de Viabilidade , Feminino , Feto/diagnóstico por imagem , Idade Gestacional , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Projetos Piloto , Gravidez , Estudos Retrospectivos
4.
Neuroimage ; 63(1): 569-80, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22732564

RESUMO

In diffusion MRI, simultaneous multi-slice single-shot EPI acquisitions have the potential to increase the number of diffusion directions obtained per unit time, allowing more diffusion encoding in high angular resolution diffusion imaging (HARDI) acquisitions. Nonetheless, unaliasing simultaneously acquired, closely spaced slices with parallel imaging methods can be difficult, leading to high g-factor penalties (i.e., lower SNR). The CAIPIRINHA technique was developed to reduce the g-factor in simultaneous multi-slice acquisitions by introducing inter-slice image shifts and thus increase the distance between aliased voxels. Because the CAIPIRINHA technique achieved this by controlling the phase of the RF excitations for each line of k-space, it is not directly applicable to single-shot EPI employed in conventional diffusion imaging. We adopt a recent gradient encoding method, which we termed "blipped-CAIPI", to create the image shifts needed to apply CAIPIRINHA to EPI. Here, we use pseudo-multiple replica SNR and bootstrapping metrics to assess the performance of the blipped-CAIPI method in 3× simultaneous multi-slice diffusion studies. Further, we introduce a novel image reconstruction method to reduce detrimental ghosting artifacts in these acquisitions. We show that data acquisition times for Q-ball and diffusion spectrum imaging (DSI) can be reduced 3-fold with a minor loss in SNR and with similar diffusion results compared to conventional acquisitions.


Assuntos
Algoritmos , Encéfalo/citologia , Imagem de Tensor de Difusão/métodos , Imagem Ecoplanar/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Fibras Nervosas Mielinizadas/ultraestrutura , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Magn Reson Med ; 59(4): 908-15, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18383281

RESUMO

Spatially tailored radio frequency (RF) excitations accelerated with parallel transmit systems provide the opportunity to create shaped volume excitations or mitigate inhomogeneous B(1) excitation profiles with clinically relevant pulse lengths. While such excitations are often designed as a least-squares optimized approximation to a target magnitude and phase profile, adherence to the target phase profile is usually not important as long as the excitation phase is slowly varying compared with the voxel dimension. In this work, we demonstrate a method for a magnitude least squares optimization of the target magnetization profile for multichannel parallel excitation to improve the magnitude profile and reduce the RF power at the cost of a less uniform phase profile. The method enables the designer to trade off the allowed spatial phase variation for the improvement in magnitude profile and reduction in RF power. We validate the method with simulation studies and demonstrate its performance in fourfold accelerated two-dimensional spiral excitations, as well as for uniform in-plane slice selective parallel excitations using an eight-channel transmit array on a 7T human MRI scanner. The experimental results are in good agreement with the simulations, which show significant improvement in the magnitude profile and reductions in the required RF power while still maintaining negligible intravoxel phase variation.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Análise dos Mínimos Quadrados , Controle de Qualidade , Ondas de Rádio , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA