Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RNA Biol ; 21(1): 1-17, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38711165

RESUMO

Spliceosome assembly contributes an important but incompletely understood aspect of splicing regulation. Prp45 is a yeast splicing factor which runs as an extended fold through the spliceosome, and which may be important for bringing its components together. We performed a whole genome analysis of the genetic interaction network of the truncated allele of PRP45 (prp45(1-169)) using synthetic genetic array technology and found chromatin remodellers and modifiers as an enriched category. In agreement with related studies, H2A.Z-encoding HTZ1, and the components of SWR1, INO80, and SAGA complexes represented prominent interactors, with htz1 conferring the strongest growth defect. Because the truncation of Prp45 disproportionately affected low copy number transcripts of intron-containing genes, we prepared strains carrying intronless versions of SRB2, VPS75, or HRB1, the most affected cases with transcription-related function. Intron removal from SRB2, but not from the other genes, partly repaired some but not all the growth phenotypes identified in the genetic screen. The interaction of prp45(1-169) and htz1Δ was detectable even in cells with SRB2 intron deleted (srb2Δi). The less truncated variant, prp45(1-330), had a synthetic growth defect with htz1Δ at 16°C, which also persisted in the srb2Δi background. Moreover, htz1Δ enhanced prp45(1-330) dependent pre-mRNA hyper-accumulation of both high and low efficiency splicers, genes ECM33 and COF1, respectively. We conclude that while the expression defects of low expression intron-containing genes contribute to the genetic interactome of prp45(1-169), the genetic interactions between prp45 and htz1 alleles demonstrate the sensitivity of spliceosome assembly, delayed in prp45(1-169), to the chromatin environment.


Assuntos
Íntrons , Fenótipo , Splicing de RNA , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Spliceossomos , Spliceossomos/metabolismo , Spliceossomos/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Regulação Fúngica da Expressão Gênica , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Histonas/metabolismo , Histonas/genética
2.
Nucleic Acids Res ; 52(7): 3870-3885, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38452217

RESUMO

The canonical stop codons of the nuclear genome of the trypanosomatid Blastocrithidia nonstop are recoded. Here, we investigated the effect of this recoding on the mitochondrial genome and gene expression. Trypanosomatids possess a single mitochondrion and protein-coding transcripts of this genome require RNA editing in order to generate open reading frames of many transcripts encoded as 'cryptogenes'. Small RNAs that can number in the hundreds direct editing and produce a mitochondrial transcriptome of unusual complexity. We find B. nonstop to have a typical trypanosomatid mitochondrial genetic code, which presumably requires the mitochondrion to disable utilization of the two nucleus-encoded suppressor tRNAs, which appear to be imported into the organelle. Alterations of the protein factors responsible for mRNA editing were also documented, but they have likely originated from sources other than B. nonstop nuclear genome recoding. The population of guide RNAs directing editing is minimal, yet virtually all genes for the plethora of known editing factors are still present. Most intriguingly, despite lacking complex I cryptogene guide RNAs, these cryptogene transcripts are stochastically edited to high levels.


Assuntos
Núcleo Celular , Genoma Mitocondrial , Edição de RNA , RNA de Transferência , Núcleo Celular/genética , Núcleo Celular/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Fases de Leitura Aberta/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Trypanosomatina/genética , Trypanosomatina/metabolismo , Códon/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Códon de Terminação/genética , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Código Genético , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
3.
Mol Biol Evol ; 40(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37279941

RESUMO

The diverse GTPases of the dynamin superfamily play various roles in the cell, as exemplified by the dynamin-related proteins (DRPs) Mgm1 and Opa1, which remodel the mitochondrial inner membrane in fungi and metazoans, respectively. Via an exhaustive search of genomic and metagenomic databases, we found previously unknown DRP types occurring in diverse eukaryotes and giant viruses (phylum Nucleocytoviricota). One novel DRP clade, termed MidX, combined hitherto uncharacterized proteins from giant viruses and six distantly related eukaryote taxa (Stramenopiles, Telonemia, Picozoa, Amoebozoa, Apusomonadida, and Choanoflagellata). MidX stood out because it was not only predicted to be mitochondria-targeted but also to assume a tertiary structure not observed in other DRPs before. To understand how MidX affects mitochondria, we exogenously expressed MidX from Hyperionvirus in the kinetoplastid Trypanosoma brucei, which lacks Mgm1 or Opa1 orthologs. MidX massively affected mitochondrial morphology from inside the matrix, where it closely associates with the inner membrane. This unprecedented mode of action contrasts to those of Mgm1 and Opa1, which mediate inner membrane remodeling in the intermembrane space. We speculate that MidX was acquired in Nucleocytoviricota evolution by horizontal gene transfer from eukaryotes and is used by giant viruses to remodel host mitochondria during infection. MidX's unique structure may be an adaptation for reshaping mitochondria from the inside. Finally, Mgm1 forms a sister group to MidX and not Opa1 in our phylogenetic analysis, throwing into question the long-presumed homology of these DRPs with similar roles in sister lineages.


Assuntos
Vírus Gigantes , Vírus Gigantes/genética , Vírus Gigantes/metabolismo , Filogenia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Saccharomyces cerevisiae/genética
4.
Mol Biol Evol ; 40(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37338543

RESUMO

The passage of protons across membranes through F1Fo-ATP synthases spins their rotors and drives the synthesis of ATP. While the principle of torque generation by proton transfer is known, the mechanisms and routes of proton access and release and their evolution are not fully understood. Here, we show that the entry site and path of protons in the lumenal half channel of mitochondrial ATP synthases are largely defined by a short N-terminal α-helix of subunit-a. In Trypanosoma brucei and other Euglenozoa, the α-helix is part of another polypeptide chain that is a product of subunit-a gene fragmentation. This α-helix and other elements forming the proton pathway are widely conserved across eukaryotes and in Alphaproteobacteria, the closest extant relatives of mitochondria, but not in other bacteria. The α-helix blocks one of two proton routes found in Escherichia coli, resulting in a single proton entry site in mitochondrial and alphaproteobacterial ATP synthases. Thus, the shape of the access half channel predates eukaryotes and originated in the lineage from which mitochondria evolved by endosymbiosis.


Assuntos
ATPases Mitocondriais Próton-Translocadoras , ATPases Translocadoras de Prótons , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Prótons , Eucariotos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Trifosfato de Adenosina/metabolismo
5.
Curr Biol ; 33(13): 2690-2701.e5, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37201521

RESUMO

The stability of endosymbiotic associations between eukaryotes and bacteria depends on a reliable mechanism ensuring vertical inheritance of the latter. Here, we demonstrate that a host-encoded protein, located at the interface between the endoplasmic reticulum of the trypanosomatid Novymonas esmeraldas and its endosymbiotic bacterium Ca. Pandoraea novymonadis, regulates such a process. This protein, named TMP18e, is a product of duplication and neo-functionalization of the ubiquitous transmembrane protein 18 (TMEM18). Its expression level is increased at the proliferative stage of the host life cycle correlating with the confinement of bacteria to the nuclear vicinity. This is important for the proper segregation of bacteria into the daughter host cells as evidenced from the TMP18e ablation, which disrupts the nucleus-endosymbiont association and leads to greater variability of bacterial cell numbers, including an elevated proportion of aposymbiotic cells. Thus, we conclude that TMP18e is necessary for the reliable vertical inheritance of endosymbionts.


Assuntos
Trypanosomatina , Trypanosomatina/microbiologia , Bactérias , Simbiose/fisiologia , Eucariotos
6.
Nucleic Acids Res ; 51(12): 6443-6460, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37207340

RESUMO

The mitochondrial ribosome (mitoribosome) has diverged drastically from its evolutionary progenitor, the bacterial ribosome. Structural and compositional diversity is particularly striking in the phylum Euglenozoa, with an extraordinary protein gain in the mitoribosome of kinetoplastid protists. Here we report an even more complex mitoribosome in diplonemids, the sister-group of kinetoplastids. Affinity pulldown of mitoribosomal complexes from Diplonema papillatum, the diplonemid type species, demonstrates that they have a mass of > 5 MDa, contain as many as 130 integral proteins, and exhibit a protein-to-RNA ratio of 11:1. This unusual composition reflects unprecedented structural reduction of ribosomal RNAs, increased size of canonical mitoribosomal proteins, and accretion of three dozen lineage-specific components. In addition, we identified >50 candidate assembly factors, around half of which contribute to early mitoribosome maturation steps. Because little is known about early assembly stages even in model organisms, our investigation of the diplonemid mitoribosome illuminates this process. Together, our results provide a foundation for understanding how runaway evolutionary divergence shapes both biogenesis and function of a complex molecular machine.


Assuntos
Euglenozoários , Ribossomos Mitocondriais , Euglenozoários/classificação , Euglenozoários/citologia , Euglenozoários/genética , Eucariotos/citologia , Eucariotos/genética , Ribossomos Mitocondriais/metabolismo , Proteínas Ribossômicas/metabolismo , RNA Ribossômico/metabolismo
7.
Nat Commun ; 13(1): 5989, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220811

RESUMO

Mitochondrial ATP synthase forms stable dimers arranged into oligomeric assemblies that generate the inner-membrane curvature essential for efficient energy conversion. Here, we report cryo-EM structures of the intact ATP synthase dimer from Trypanosoma brucei in ten different rotational states. The model consists of 25 subunits, including nine lineage-specific, as well as 36 lipids. The rotary mechanism is influenced by the divergent peripheral stalk, conferring a greater conformational flexibility. Proton transfer in the lumenal half-channel occurs via a chain of five ordered water molecules. The dimerization interface is formed by subunit-g that is critical for interactions but not for the catalytic activity. Although overall dimer architecture varies among eukaryotes, we find that subunit-g together with subunit-e form an ancestral oligomerization motif, which is shared between the trypanosomal and mammalian lineages. Therefore, our data defines the subunit-g/e module as a structural component determining ATP synthase oligomeric assemblies.


Assuntos
ATPases Mitocondriais Próton-Translocadoras , Animais , Lipídeos , Mamíferos , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Subunidades Proteicas/metabolismo , Prótons , Água
8.
Trends Parasitol ; 38(12): 1053-1067, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36075844

RESUMO

Translation in mitochondria is mediated by mitochondrial ribosomes, or mitoribosomes, complex ribonucleoprotein machines with dual genetic origin. Mitoribosomes in trypanosomatid parasites diverged markedly from their bacterial ancestors and other eukaryotic lineages in terms of protein composition, rRNA content, and overall architecture, yet their core functional elements remained conserved. Recent cryo-electron microscopy studies provided atomic models of trypanosomatid large and small mitoribosomal subunits and their precursors, making these parasites the organisms with the best-understood biogenesis of mitoribosomes. The structures revealed molecular mechanisms and players involved in the assembly of mitoribosomes not only in the parasites, but also in eukaryotes in general.


Assuntos
Ribossomos Mitocondriais , RNA Ribossômico , Microscopia Crioeletrônica , Ribossomos Mitocondriais/química , Ribossomos Mitocondriais/metabolismo , RNA Ribossômico/análise , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Mitocôndrias/metabolismo
10.
mSphere ; : e0032721, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34133204

RESUMO

Mitochondrial cristae are polymorphic invaginations of the inner membrane that are the fabric of cellular respiration. Both the mitochondrial contact site and cristae organization system (MICOS) and the F1FO-ATP synthase are vital for sculpting cristae by opposing membrane-bending forces. While MICOS promotes negative curvature at crista junctions, dimeric F1FO-ATP synthase is crucial for positive curvature at crista rims. Crosstalk between these two complexes has been observed in baker's yeast, the model organism of the Opisthokonta supergroup. Here, we report that this property is conserved in Trypanosoma brucei, a member of the Discoba clade that separated from the Opisthokonta ∼2 billion years ago. Specifically, one of the paralogs of the core MICOS subunit Mic10 interacts with dimeric F1FO-ATP synthase, whereas the other core Mic60 subunit has a counteractive effect on F1FO-ATP synthase oligomerization. This is evocative of the nature of MICOS-F1FO-ATP synthase crosstalk in yeast, which is remarkable given the diversification that these two complexes have undergone during almost 2 eons of independent evolution. Furthermore, we identified a highly diverged, putative homolog of subunit e, which is essential for the stability of F1FO-ATP synthase dimers in yeast. Just like subunit e, it is preferentially associated with dimers and interacts with Mic10, and its silencing results in severe defects to cristae and the disintegration of F1FO-ATP synthase dimers. Our findings indicate that crosstalk between MICOS and dimeric F1FO-ATP synthase is a fundamental property impacting crista shape throughout eukaryotes. IMPORTANCE Mitochondria have undergone profound diversification in separate lineages that have radiated since the last common ancestor of eukaryotes some eons ago. Most eukaryotes are unicellular protists, including etiological agents of infectious diseases, like Trypanosoma brucei. Thus, the study of a broad range of protists can reveal fundamental features shared by all eukaryotes and lineage-specific innovations. Here, we report that two different protein complexes, MICOS and F1FO-ATP synthase, known to affect mitochondrial architecture, undergo crosstalk in T. brucei, just as in baker's yeast. This is remarkable considering that these complexes have otherwise undergone many changes during their almost 2 billion years of independent evolution. Thus, this crosstalk is a fundamental property needed to maintain proper mitochondrial structure even if the constituent players considerably diverged.

11.
Parasitology ; 148(10): 1151-1160, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33551002

RESUMO

Mitochondrial F-type adenosine triphosphate (ATP) synthases are commonly introduced as highly conserved membrane-embedded rotary machines generating the majority of cellular ATP. This simplified view neglects recently revealed striking compositional diversity of the enzyme and the fact that in specific life stages of some parasites, the physiological role of the enzyme is to maintain the mitochondrial membrane potential at the expense of ATP rather than to produce ATP. In addition, mitochondrial ATP synthases contribute indirectly to the organelle's other functions because they belong to major determinants of submitochondrial morphology. Here, we review current knowledge about the trypanosomal ATP synthase composition and architecture in the context of recent advances in the structural characterization of counterpart enzymes from several eukaryotic supergroups. We also discuss the physiological function of mitochondrial ATP synthases in three trypanosomatid parasites, Trypanosoma cruzi, Trypanosoma brucei and Leishmania, with a focus on their disease-causing life cycle stages. We highlight the reversed proton-pumping role of the ATP synthase in the T. brucei bloodstream form, the enzyme's potential link to the regulation of parasite's glycolysis and its role in generating mitochondrial membrane potential in the absence of mitochondrial DNA.


Assuntos
Engenharia Genética , Leishmania/enzimologia , ATPases Mitocondriais Próton-Translocadoras/genética , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/enzimologia , Trypanosoma cruzi/enzimologia , Potencial da Membrana Mitocondrial , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Proteínas de Protozoários/metabolismo
12.
J Biol Chem ; 296: 100357, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33539923

RESUMO

Mitochondrial ATP synthase is a reversible nanomotor synthesizing or hydrolyzing ATP depending on the potential across the membrane in which it is embedded. In the unicellular parasite Trypanosoma brucei, the direction of the complex depends on the life cycle stage of this digenetic parasite: in the midgut of the tsetse fly vector (procyclic form), the FoF1-ATP synthase generates ATP by oxidative phosphorylation, whereas in the mammalian bloodstream form, this complex hydrolyzes ATP and maintains mitochondrial membrane potential (ΔΨm). The trypanosome FoF1-ATP synthase contains numerous lineage-specific subunits whose roles remain unknown. Here, we seek to elucidate the function of the lineage-specific protein Tb1, the largest membrane-bound subunit. In procyclic form cells, Tb1 silencing resulted in a decrease of FoF1-ATP synthase monomers and dimers, rerouting of mitochondrial electron transfer to the alternative oxidase, reduced growth rate and cellular ATP levels, and elevated ΔΨm and total cellular reactive oxygen species levels. In bloodstream form parasites, RNAi silencing of Tb1 by ∼90% resulted in decreased FoF1-ATPase monomers and dimers, but it had no apparent effect on growth. The same findings were obtained by silencing of the oligomycin sensitivity-conferring protein, a conserved subunit in T. brucei FoF1-ATP synthase. However, as expected, nearly complete Tb1 or oligomycin sensitivity-conferring protein suppression was lethal because of the inability to sustain ΔΨm. The diminishment of FoF1-ATPase complexes was further accompanied by a decreased ADP/ATP ratio and reduced oxygen consumption via the alternative oxidase. Our data illuminate the often diametrically opposed bioenergetic consequences of FoF1-ATP synthase loss in insect versus mammalian forms of the parasite.


Assuntos
Trifosfato de Adenosina/metabolismo , Ciclo Celular , Metabolismo Energético , Mitocôndrias/metabolismo , ATPases Translocadoras de Prótons/deficiência , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/metabolismo , Trifosfato de Adenosina/genética , Potencial da Membrana Mitocondrial , Mitocôndrias/genética , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/genética
13.
EMBO J ; 40(6): e106292, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33576519

RESUMO

Mitoribosomes consist of ribosomal RNA and protein components, coordinated assembly of which is critical for function. We used mitoribosomes from Trypanosoma brucei with reduced RNA and increased protein mass to provide insights into the biogenesis of the mitoribosomal large subunit. Structural characterization of a stable assembly intermediate revealed 22 assembly factors, some of which have orthologues/counterparts/homologues in mammalian genomes. These assembly factors form a protein network that spans a distance of 180 Å, shielding the ribosomal RNA surface. The central protuberance and L7/L12 stalk are not assembled entirely and require removal of assembly factors and remodeling of the mitoribosomal proteins to become functional. The conserved proteins GTPBP7 and mt-EngA are bound together at the subunit interface in proximity to the peptidyl transferase center. A mitochondrial acyl-carrier protein plays a role in docking the L1 stalk, which needs to be repositioned during maturation. Additional enzymatically deactivated factors scaffold the assembly while the exit tunnel is blocked. Together, this extensive network of accessory factors stabilizes the immature sites and connects the functionally important regions of the mitoribosomal large subunit.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Ribossomos Mitocondriais/metabolismo , Biossíntese de Proteínas/fisiologia , Subunidades Ribossômicas Maiores/metabolismo , Trypanosoma brucei brucei/metabolismo , Microscopia Crioeletrônica , Ligação Proteica/fisiologia , Conformação Proteica , RNA Ribossômico/genética
15.
mBio ; 10(4)2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311886

RESUMO

We report frequent losses of components of the classical nonhomologous end joining pathway (C-NHEJ), one of the main eukaryotic tools for end joining repair of DNA double-strand breaks, in several lineages of parasitic protists. Moreover, we have identified a single lineage among trypanosomatid flagellates that has lost Ku70 and Ku80, the core C-NHEJ components, and accumulated numerous insertions in many protein-coding genes. We propose a correlation between these two phenomena and discuss the possible impact of the C-NHEJ loss on genome evolution and transition to the parasitic lifestyle.IMPORTANCE Parasites tend to evolve small and compact genomes, generally endowed with a high mutation rate, compared with those of their free-living relatives. However, the mechanisms by which they achieve these features, independently in unrelated lineages, remain largely unknown. We argue that the loss of the classical nonhomologous end joining pathway components may be one of the crucial steps responsible for characteristic features of parasite genomes.


Assuntos
Reparo do DNA por Junção de Extremidades , Eucariotos/metabolismo , Parasitos/genética , Sequência de Aminoácidos , Animais , Genoma , Genômica/métodos , Autoantígeno Ku/química , Autoantígeno Ku/metabolismo , Modelos Moleculares , Parasitos/classificação , Parasitos/metabolismo , Filogenia , Conformação Proteica , Transdução de Sinais
16.
J Vis Exp ; (143)2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30735175

RESUMO

F1-ATPase is a membrane-extrinsic catalytic subcomplex of F-type ATP synthase, an enzyme that uses the proton motive force across biological membranes to produce adenosine triphosphate (ATP). The isolation of the intact F1-ATPase from its native source is an essential prerequisite to characterize the enzyme's protein composition, kinetic parameters, and sensitivity to inhibitors. A highly pure and homogeneous F1-ATPase can be used for structural studies, which provide insight into molecular mechanisms of ATP synthesis and hydrolysis. This article describes a procedure for the purification of the F1-ATPase from Trypanosoma brucei, the causative agent of African trypanosomiases. The F1-ATPase is isolated from mitochondrial vesicles, which are obtained by hypotonic lysis from in vitro cultured trypanosomes. The vesicles are mechanically fragmented by sonication and the F1-ATPase is released from the inner mitochondrial membrane by the chloroform extraction. The enzymatic complex is further purified by consecutive anion exchange and size-exclusion chromatography. Sensitive mass spectrometry techniques showed that the purified complex is devoid of virtually any protein contaminants and, therefore, represents suitable material for structure determination by X-ray crystallography or cryo-electron microscopy. The isolated F1-ATPase exhibits ATP hydrolytic activity, which can be inhibited fully by sodium azide, a potent inhibitor of F-type ATP synthases. The purified complex remains stable and active for at least three days at room temperature. Precipitation by ammonium sulfate is used for long-term storage. Similar procedures have been used for the purification of F1-ATPases from mammalian and plant tissues, yeasts, or bacteria. Thus, the presented protocol can serve as a guideline for the F1-ATPase isolation from other organisms.


Assuntos
ATPases Translocadoras de Prótons/química , Trypanosoma brucei brucei/metabolismo , Animais
17.
FEBS J ; 285(23): 4413-4423, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30288927

RESUMO

Hydrolysis of ATP by the mitochondrial F-ATPase is inhibited by a protein called IF1 . In the parasitic flagellate, Trypanosoma brucei, this protein, known as TbIF1 , is expressed exclusively in the procyclic stage, where the F-ATPase is synthesizing ATP. In the bloodstream stage, where TbIF1 is absent, the F-ATPase hydrolyzes ATP made by glycolysis and compensates for the absence of a proton pumping respiratory chain by translocating protons into the intermembrane space, thereby maintaining the essential mitochondrial membrane potential. We have defined regions and amino acid residues of TbIF1 that are required for its inhibitory activity by analyzing the binding of several modified recombinant inhibitors to F1 -ATPase isolated from the procyclic stage of T. brucei. Kinetic measurements revealed that the C-terminal portion of TbIF1 facilitates homodimerization, but it is not required for the inhibitory activity, similar to the bovine and yeast orthologs. However, in contrast to bovine IF1 , the inhibitory capacity of the C-terminally truncated TbIF1 diminishes with decreasing pH, similar to full length TbIF1 . This effect does not involve the dimerization of active dimers to form inactive tetramers. Over a wide pH range, the full length and C-terminally truncated TbIF1 form dimers and monomers, respectively. TbIF1 has no effect on bovine F1 -ATPase, and this difference in the mechanism of regulation of the F-ATPase between the host and the parasite could be exploited in the design of drugs to combat human and animal African trypanosomiases.


Assuntos
Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica , Proteínas/farmacologia , ATPases Translocadoras de Prótons/antagonistas & inibidores , Trypanosoma brucei brucei/enzimologia , Sequência de Aminoácidos , Animais , Bovinos , Inibidores Enzimáticos/química , Mutação , Proteínas/química , Proteínas/genética , Homologia de Sequência , Proteína Inibidora de ATPase
18.
PLoS Negl Trop Dis ; 12(2): e0006301, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29481567

RESUMO

Due to toxicity and compliance issues and the emergence of resistance to current medications new drugs for the treatment of Human African Trypanosomiasis are needed. A potential approach to developing novel anti-trypanosomal drugs is by inhibition of the 6-oxopurine salvage pathways which synthesise the nucleoside monophosphates required for DNA/RNA production. This is in view of the fact that trypanosomes lack the machinery for de novo synthesis of the purine ring. To provide validation for this approach as a drug target, we have RNAi silenced the three 6-oxopurine phosphoribosyltransferase (PRTase) isoforms in the infectious stage of Trypanosoma brucei demonstrating that the combined activity of these enzymes is critical for the parasites' viability. Furthermore, we have determined crystal structures of two of these isoforms in complex with several acyclic nucleoside phosphonates (ANPs), a class of compound previously shown to inhibit 6-oxopurine PRTases from several species including Plasmodium falciparum. The most potent of these compounds have Ki values as low as 60 nM, and IC50 values in cell based assays as low as 4 µM. This data provides a solid platform for further investigations into the use of this pathway as a target for anti-trypanosomal drug discovery.


Assuntos
Inibidores Enzimáticos/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Purinonas/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/metabolismo , Domínio Catalítico , Descoberta de Drogas , Inibidores Enzimáticos/química , Humanos , Hipoxantina Fosforribosiltransferase/antagonistas & inibidores , Hipoxantina Fosforribosiltransferase/química , Hipoxantina Fosforribosiltransferase/genética , Hipoxantina Fosforribosiltransferase/metabolismo , Modelos Moleculares , Pentosiltransferases/antagonistas & inibidores , Pentosiltransferases/química , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Interferência de RNA , Tripanossomicidas/química , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética
19.
Proc Natl Acad Sci U S A ; 115(9): 2102-2107, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29440423

RESUMO

The structures and functions of the components of ATP synthases, especially those subunits involved directly in the catalytic formation of ATP, are widely conserved in metazoans, fungi, eubacteria, and plant chloroplasts. On the basis of a map at 32.5-Å resolution determined in situ in the mitochondria of Trypanosoma brucei by electron cryotomography, it has been proposed that the ATP synthase in this species has a noncanonical structure and different catalytic sites in which the catalytically essential arginine finger is provided not by the α-subunit adjacent to the catalytic nucleotide-binding site as in all species investigated to date, but rather by a protein, p18, found only in the euglenozoa. A crystal structure at 3.2-Å resolution of the catalytic domain of the same enzyme demonstrates that this proposal is incorrect. In many respects, the structure is similar to the structures of F1-ATPases determined previously. The α3ß3-spherical portion of the catalytic domain in which the three catalytic sites are found, plus the central stalk, are highly conserved, and the arginine finger is provided conventionally by the α-subunits adjacent to each of the three catalytic sites found in the ß-subunits. Thus, the enzyme has a conventional catalytic mechanism. The structure differs from previous described structures by the presence of a p18 subunit, identified only in the euglenozoa, associated with the external surface of each of the three α-subunits, thereby elaborating the F1-domain. Subunit p18 is a pentatricopeptide repeat (PPR) protein with three PPRs and appears to have no function in the catalytic mechanism of the enzyme.


Assuntos
ATPases Mitocondriais Próton-Translocadoras/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/enzimologia , Domínio Catalítico , Regulação Enzimológica da Expressão Gênica , ATPases Mitocondriais Próton-Translocadoras/genética , Modelos Moleculares , Conformação Proteica , Subunidades Proteicas , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/genética
20.
FEBS J ; 285(3): 614-628, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29247468

RESUMO

The F-ATPases (also called the F1 Fo -ATPases or ATP synthases) are multi-subunit membrane-bound molecular machines that produce ATP in bacteria and in eukaryotic mitochondria and chloroplasts. The structures and enzymic mechanisms of their F1 -catalytic domains are highly conserved in all species investigated hitherto. However, there is evidence that the F-ATPases from the group of protozoa known as Euglenozoa have novel features. Therefore, we have isolated pure and active F1 -ATPase from the euglenozoan parasite, Trypanosoma brucei, and characterized it. All of the usual eukaryotic subunits (α, ß, γ, δ, and ε) were present in the enzyme, and, in addition, two unique features were detected. First, each of the three α-subunits in the F1 -domain has been cleaved by proteolysis in vivo at two sites eight residues apart, producing two assembled fragments. Second, the T. brucei F1 -ATPase has an additional subunit, called p18, present in three copies per complex. Suppression of expression of p18 affected in vitro growth of both the insect and infectious mammalian forms of T. brucei. It also reduced the levels of monomeric and multimeric F-ATPase complexes and diminished the in vivo hydrolytic activity of the enzyme significantly. These observations imply that p18 plays a role in the assembly of the F1 domain. These unique features of the F1 -ATPase extend the list of special characteristics of the F-ATPase from T. brucei, and also, demonstrate that the architecture of the F1 -ATPase complex is not strictly conserved in eukaryotes.


Assuntos
Modelos Moleculares , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/enzimologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Biologia Computacional , Sequência Conservada , Estabilidade Enzimática , Hidrólise , Cinética , Potencial da Membrana Mitocondrial , Mapeamento de Peptídeos , Conformação Proteica , Multimerização Proteica , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , Proteólise , ATPases Translocadoras de Prótons/antagonistas & inibidores , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/isolamento & purificação , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas de Protozoários/isolamento & purificação , Interferência de RNA , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Trypanosoma brucei brucei/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...