Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474565

RESUMO

Based on density functional theory (DFT) and wave function analysis, the ultraviolet and visible spectrophotometry (UV-Vis) spectra and Raman spectra of 1-meso and 1-rac obtained by the chiral separation of chiral nanographenes are theoretically investigated. The electron excitation properties of 1-meso and 1-rac are studied by means of transition density matrix (TDM) and charge density difference (CDD) diagrams. The intermolecular interaction is discussed based on an independent gradient model based on Hirshfeld partition (IGMH). The interaction of 1-meso and 1-rac with the external environment is studied using the electrostatic potential (ESP), and the electron delocalization degree of 1-meso and 1-rac is studied based on the magnetically induced current under the external magnetic field. Through the chiral separation of 1-rac, two enantiomers, 1-(P, P) and 1-(M, M), were obtained. The electrical-magnetic interaction of the molecule is revealed by analyzing the electron circular dichroism (ECD) spectra of 1-meso, 1-(P, P) and 1-(M, M), the transition electric dipole moment (TEDM) and the transition magnetic dipole moment (TMDM). It is found that 1-(P, P) and 1-(M, M) have opposite chiral properties due to the inversion of the structure.

2.
Phys Chem Chem Phys ; 25(29): 20049-20065, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37462095

RESUMO

The one-photon absorption properties (OPA), two-photon absorption properties (TPA), electronic circular dichroism (ECD) spectra and partial DOS (PDOS) of a twist bilayer graphdiyne nanodisk (TwBLGDY-ND) were investigated by using a variety of quantum chemistry and wave function analyses. The physical mechanism of the twist bilayer graphdiyne nanodisk (TwBLGDY) with optical properties regulated by twisting angles was revealed. The results show that the twist angle makes the TwBLGDY form a moiré superlattice structure, and electron excitation mainly occurs in the first ring of the moiré superlattice structure. The contribution of atomic orbitals in these fragments to transition dipole moments is greater and electronic transitions are more likely to occur. When the twist angle increases from 0° to 15°, the absorption spectrum of the system is red shifted, which is mainly due to the enhancement of electron excitation characteristics. When the twist angle increases from 15° to 27.5°, the absorption spectrum of the system is blue shifted, due to the enhanced charge transfer within the layer. On the other hand, the twist angle can regulate the TPA absorption cross section of the system to enhance the intensity of the absorption spectrum. The twist angle can also regulate chirality by adjusting the spatial distribution of electric dipole transition and magnetic dipole transition. This study can provide theoretical guidance for constructing chiral optical devices based on the TwBLGDY structure.

3.
Chemphyschem ; 24(15): e202300246, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37226291

RESUMO

Dehydro[10]annulene had been prepared experimentally recently, which is considered to be a highly rigid structure with planar configuration. In this paper, the electronic structure and bonding character of dehydro[10]annulene had been studied by means of molecular orbital (MO), density of states (DOS), bond order (BO) and interaction region indicator (IRI) analyses. The delocalization characters of out-of-plane and in-plane π-electrons (πout - and πin -electrons) of the bond regions were studied by using localized orbital locator (LOL). The anisotropy of the induced current density (AICD), iso-chemical shielding surface (ICSS) and anisotropy of the gauge-including magnetically induced current (GIMIC) were used to investigate the molecular response to external magnetic field, including the induced ring current and the magnetic shielding characteristic. The results showed that the electron delocalization of dehydro[10]annulene is mainly contributed by πout system. The apparent clockwise current in the πout system proved that dehydro[10]annulene is πout aromatic. Finally, the photophysical properties and (hyper)polarizability of dehydro[10]annulene were studied by TD-DFT calculation. The results showed that dehydro[10]annulene has strong local excitation characters. Its (hyper)polarizability decreases with the increase of frequency and has the characteristics of nonlinear anisotropy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...