Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 381
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39276751

RESUMO

Metabolic pathways are affected by the impacts of environmental contaminants underlying a large variability of toxic effects across different species. However, the systematic reconstruction of metabolic pathways remains limited in environmental sentinel species due to the lack of available genomic data in many taxa of animal diversity. In this study we used a multi-omics approach to reconstruct the most comprehensive map of metabolic pathways for a crustacean model in biomonitoring, the amphipod Gammarus fossarum in order to improve the knowledge of the metabolism of this sentinel species. We revisited the assembly of RNA-seq data by de novo approaches to reduce RNA contaminants and transcript redundancy. We also acquired extensive mass spectrometry shotgun proteomic data on several organs from a reference population of G. fossarum males and females to identify organ-specific metabolic profiles. The G. fossarum metabolic pathway reconstruction (available through the metabolic database GamfoCyc) was performed by adapting the genomic tool CycADS and we identified 377 pathways representing 7630 annotated enzymes, 2610 enzymatic reactions and the expression of 858 enzymes was experimentally validated by proteomics. To our knowledge, our analysis provides for the first time a systematic metabolic pathway reconstruction and the proteome profiles of these pathways at the organ level in this sentinel species. As an example, we show an elevated abundance in enzymes involved in ATP biosynthesis and fatty acid beta-oxidation indicative of the high-energy requirement of the gills, or the key anabolic and detoxification role of the hepatopancreatic caeca, as exemplified by the specific expression of the retinoid biosynthetic pathways and glutathione synthesis. In conclusion, the multi-omics data integration performed in this study provides new resources to investigate metabolic processes in crustacean amphipods and their role in mediating the effects of environmental contaminant exposures in sentinel species. SYNOPSIS: This study provide the first evidence that it is possible to combine multiple omics data to exhaustively describe the metabolic network of a model species in ecotoxicology, Gammarus fossarum, for which a reference genome is not yet available.

2.
Gen Comp Endocrinol ; 357: 114595, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39059616

RESUMO

Immunosenescence corresponds to the progressive decline of immune functions with increasing age. Although it is critical to understand what modulates such a decline, the ecological and physiological drivers of immunosenescence remain poorly understood in the wild. Among them, the level of glucocorticoids (GCs) during early life are good candidates to modulate immunosenescence patterns because these hormones can have long-term consequences on individual physiology. Indeed, GCs act as regulators of energy allocation to ensure allostasis, are part of the stress response triggered by unpredictable events and have immunosuppressive effects when chronically elevated. We used longitudinal data collected over two decades in two populations of roe deer (Capreolus capreolus) to test whether higher baseline GC levels measured within the first year of life were associated with a more pronounced immunosenescence and parasite susceptibility. We first assessed immunosenescence trajectories in these populations facing contrasting environmental conditions. Then, we found that juvenile GC levels can modulate lymphocyte trajectory. Lymphocyte depletion was accelerated late in life when GCs were elevated early in life. Although the exact mechanism remains to be elucidated, it could involve a role of GCs on thymic characteristics. In addition, elevated GC levels in juveniles were associated with a higher abundance of lung parasites during adulthood for individuals born during bad years, suggesting short-term negative effects of GCs on juvenile immunity, having in turn long-lasting consequences on adult parasite load, depending on juvenile environmental conditions. These findings offer promising research directions in assessing the carry-over consequences of GCs on life-history traits in the wild.


Assuntos
Cervos , Glucocorticoides , Animais , Cervos/fisiologia , Contagem de Linfócitos , Imunossenescência , Feminino , Envelhecimento , Masculino , Linfócitos/metabolismo , Linfócitos/imunologia
3.
Mol Cell Proteomics ; : 100822, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39084562

RESUMO

Accurate and rapid identification of viruses is crucial for an effective medical diagnosis when dealing with infections. Conventional methods, including DNA amplification techniques or lateral-flow assays, are constrained to a specific set of targets to search for. In this study, we introduce a novel tandem mass spectrometry proteotyping-based method that offers a universal approach for the identification of pathogenic viruses and other components, eliminating the need for a priori knowledge of the sample composition. Our protocol relies on a time and cost-efficient peptide sample preparation, followed by an analysis with liquid chromatography coupled to high-resolution tandem mass spectrometry. As a proof of concept, we first assessed our method on publicly available shotgun proteomics datasets obtained from virus preparations and fecal samples of infected individuals. Successful virus identification was achieved with 53 public datasets, spanning 23 distinct viral species. Furthermore, we illustrated the method's capability to discriminate closely related viruses within the same sample, using alphaviruses as an example. The clinical applicability of our method was demonstrated by the accurate detection of the vaccinia virus in spiked saliva, a matrix of paramount clinical significance due to its non-invasive and easily obtainable nature. This innovative approach represents a significant advancement in pathogen detection and paves the way for enhanced diagnostic capabilities.

4.
Trends Ecol Evol ; 39(9): 830-840, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39003192

RESUMO

Life history strategies, which combine schedules of survival, development, and reproduction, shape how natural selection acts on species' heritable traits and organismal fitness. Comparative analyses have historically ranked life histories along a fast-slow continuum, describing a negative association between time allocation to reproduction and development versus survival. However, higher-quality, more representative data and analyses have revealed that life history variation cannot be fully accounted for by this single continuum. Moreover, studies often do not test predictions from existing theories and instead operate as exploratory exercises. To move forward, we offer three recommendations for future investigations: standardizing life history traits, overcoming taxonomic siloes, and using theory to move from describing to understanding life history variation across the Tree of Life.


Assuntos
Características de História de Vida , Reprodução , Animais , Seleção Genética , Evolução Biológica
6.
Biomolecules ; 14(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540800

RESUMO

This study aims at identifying molecular biomarkers differentiating responders and non-responders to treatment with Tumor Necrosis Factor inhibitors (TNFi) among patients with axial spondyloarthritis (axSpA). Whole blood mRNA and plasma proteins were measured in a cohort of biologic-naïve axSpA patients (n = 35), pre and post (14 weeks) TNFi treatment with adalimumab. Differential expression analysis was used to identify the most enriched pathways and in predictive models to distinguish responses to TNFi. A treatment-associated signature suggests a reduction in inflammatory activity. We found transcripts and proteins robustly differentially expressed between baseline and week 14 in responders. C-reactive protein (CRP) and Haptoglobin (HP) proteins showed strong and early decrease in the plasma of axSpA patients, while a cluster of apolipoproteins (APOD, APOA2, APOA1) showed increased expression at week 14. Responders to TNFi treatment present higher levels of markers of innate immunity at baseline, and lower levels of adaptive immunity markers, particularly B-cells. A logistic regression model incorporating ASDAS-CRP, gender, and AFF3, the top differentially expressed gene at baseline, enabled an accurate prediction of response to adalimumab in our cohort (AUC = 0.97). In conclusion, innate and adaptive immune cell type composition at baseline may be a major contributor to response to adalimumab in axSpA patients. A model including clinical and gene expression variables should also be considered.


Assuntos
Antirreumáticos , Espondiloartrite Axial , Espondilite Anquilosante , Humanos , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Adalimumab/uso terapêutico , Antirreumáticos/uso terapêutico , Fator de Necrose Tumoral alfa , Resultado do Tratamento
7.
Curr Res Transl Med ; 72(3): 103440, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38447270

RESUMO

Genomic characterization is an essential part of the clinical management of hematological malignancies for diagnostic, prognostic and therapeutic purposes. Although CBA and FISH are still the gold standard in hematology for the detection of CNA and SV, some alternative technologies are intended to complement their deficiencies or even replace them in the more or less near future. In this article, we provide a technological overview of these alternatives. CMA is the historical and well established technique for the high-resolution detection of CNA. For SV detection, there are emerging techniques based on the study of chromatin conformation and more established ones such as RTMLPA for the detection of fusion transcripts and RNA-seq to reveal the molecular consequences of SV. Comprehensive techniques that detect both CNA and SV are the most interesting because they provide all the information in a single examination. Among these, OGM is a promising emerging higher-solution technique that offers a complete solution at a contained cost, at the expense of a relatively low throughput per machine. WGS remains the most adaptable solution, with long-read approaches enabling very high-resolution detection of CAs, but requiring a heavy bioinformatics installation and at a still high cost. However, the development of high-resolution genome-wide detection techniques for CAs allows for a much better description of chromoanagenesis. Therefore, we have included in this review an update on the various existing mechanisms and their consequences and implications, especially prognostic, in hematological malignancies.


Assuntos
Análise Citogenética , Neoplasias Hematológicas , Humanos , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/terapia , Análise Citogenética/métodos , Variações do Número de Cópias de DNA , Aberrações Cromossômicas , Citogenética/métodos , Genômica/métodos
8.
Appl Environ Microbiol ; 90(3): e0193123, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376171

RESUMO

White-rot fungi employ secreted carbohydrate-active enzymes (CAZymes) along with reactive oxygen species (ROS), like hydrogen peroxide (H2O2), to degrade lignocellulose in wood. H2O2 serves as a co-substrate for key oxidoreductases during the initial decay phase. While the degradation of lignocellulose by CAZymes is well documented, the impact of ROS on the oxidation of the secreted proteins remains unclear, and the identity of the oxidized proteins is unknown. Methionine (Met) can be oxidized to Met sulfoxide (MetO) or Met sulfone (MetO2) with potential deleterious, antioxidant, or regulatory effects. Other residues, like proline (Pro), can undergo carbonylation. Using the white-rot Pycnoporus cinnabarinus grown on aspen wood, we analyzed the Met content of the secreted proteins and their susceptibility to oxidation combining H218O2 with deep shotgun proteomics. Strikingly, their overall Met content was significantly lower (1.4%) compared to intracellular proteins (2.1%), a feature conserved in fungi but not in metazoans or plants. We evidenced that a catalase, widespread in white-rot fungi, protects the secreted proteins from oxidation. Our redox proteomics approach allowed the identification of 49 oxidizable Met and 40 oxidizable Pro residues within few secreted proteins, mostly CAZymes. Interestingly, many of them had several oxidized residues localized in hotspots. Some Met, including those in GH7 cellobiohydrolases, were oxidized up to 47%, with a substantial percentage of sulfone (13%). These Met are conserved in fungal homologs, suggesting important functional roles. Our findings reveal that white-rot fungi safeguard their secreted proteins by minimizing their Met content and by scavenging ROS and pinpoint redox-active residues in CAZymes.IMPORTANCEThe study of lignocellulose degradation by fungi is critical for understanding the ecological and industrial implications of wood decay. While carbohydrate-active enzymes (CAZymes) play a well-established role in lignocellulose degradation, the impact of hydrogen peroxide (H2O2) on secreted proteins remains unclear. This study aims at evaluating the effect of H2O2 on secreted proteins, focusing on the oxidation of methionine (Met). Using the model white-rot fungi Pycnoporus cinnabarinus grown on aspen wood, we showed that fungi protect their secreted proteins from oxidation by reducing their Met content and utilizing a secreted catalase to scavenge exogenous H2O2. The research identified key oxidizable Met within secreted CAZymes. Importantly, some Met, like those of GH7 cellobiohydrolases, undergone substantial oxidation levels suggesting important roles in lignocellulose degradation. These findings highlight the adaptive mechanisms employed by white-rot fungi to safeguard their secreted proteins during wood decay and emphasize the importance of these processes in lignocellulose breakdown.


Assuntos
Basidiomycota , Peróxido de Hidrogênio , Polyporaceae , Catalase/metabolismo , Peróxido de Hidrogênio/metabolismo , Madeira/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Fúngicas/metabolismo , Lignina/metabolismo , Basidiomycota/metabolismo , Oxirredução , Celulose 1,4-beta-Celobiosidase/metabolismo , Carboidratos , Metionina/metabolismo , Sulfonas/metabolismo
9.
PLoS Biol ; 22(2): e3002513, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38412150

RESUMO

Why and how we age are 2 intertwined questions that have fascinated scientists for many decades. However, attempts to answer these questions remain compartmentalized, preventing a comprehensive understanding of the aging process. We argue that the current lack of knowledge about the evolution of aging mechanisms is due to a lack of clarity regarding evolutionary theories of aging that explicitly involve physiological processes: the disposable soma theory (DST) and the developmental theory of aging (DTA). In this Essay, we propose a new hierarchical model linking genes to vital rates, enabling us to critically reevaluate the DST and DTA in terms of their relationship to evolutionary genetic theories of aging (mutation accumulation (MA) and antagonistic pleiotropy (AP)). We also demonstrate how these 2 theories can be incorporated in a unified hierarchical framework. The new framework will help to generate testable hypotheses of how the hallmarks of aging are shaped by natural selection.


Assuntos
Evolução Biológica , Longevidade , Longevidade/genética , Acúmulo de Mutações , Seleção Genética
10.
Proteomics ; : e2300372, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168112

RESUMO

Rapid identification of microorganisms is essential for medical diagnostics, sanitary controls, and food safety. High-throughput analytical platforms currently rely on whole-cell MALDI-TOF mass spectrometry to process hundreds of samples per day. Although this technology has become a reference method, it is unable to process most environmental isolates and opportunistic pathogens due to an incomplete experimental spectrum database. In most cases, its discriminating power is limited to the species taxonomical rank. By recording much more sequence information at the peptide level, proteotyping by tandem mass spectrometry is able to identify the taxonomic position of any microorganism in the tree of life and can be highly discriminating at the subspecies level. We propose here a methodology for ultra-fast identification of microorganisms by tandem mass spectrometry based on direct sample infusion and a highly sensitive procedure for data processing and taxonomic identification. Results obtained on reference strains and hitherto uncharacterized bacterial isolates show identification to species level in 36 s of tandem mass spectrometry signal, 102 s when including the injection procedure. Flash proteotyping is highly discriminating, as it can provide information down to strain level. The methodology enables high throughput identification of isolates, opening up new prospects, particularly in culturomics, and diagnostics.

11.
NanoImpact ; 33: 100492, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38195029

RESUMO

Recently CuO nanoparticles (n-CuO) have been proposed as an alternative method to deliver a Cu-based pesticide for controlling fungal infestations. With the concomitant use of glyphosate as an herbicide, the interactions between n-CuO and this strong ligand need to be assessed. We investigated the dissolution kinetics of n-CuO and bulk-CuO (b-CuO) particles in the presence of a commercial glyphosate product and compared it to oxalate, a natural ligand present in soil water. We performed experiments at concentration levels representative of the conditions under which n-CuO and glyphosate would be used (∼0.9 mg/L n-CuO and 50 µM of glyphosate). As tenorite (CuO) dissolution kinetics are known to be surface controlled, we determined that at pH 6.5, T âˆ¼ 20 °C, using KNO3 as background electrolyte, the presence of glyphosate leads to a dissolution rate of 9.3 ± 0.7 ×10-3 h-1. In contrast, in absence of glyphosate, and under the same conditions, it is 2 orders of magnitude less: 8.9 ± 3.6 ×10-5 h-1. In a more complex multi-electrolyte aqueous solution the same effect is observed; glyphosate promotes the dissolution rates of n-CuO and b-CuO within the first 10 h of reaction by a factor of ∼2 to ∼15. In the simple KNO3 electrolyte, oxalate leads to dissolution rates of CuO about two times faster than glyphosate. However, the kinetic rates within the first 10 h of reaction are about the same for the two ligands when the reaction takes place in the multi-electrolyte solution as oxalate is mostly bound to Ca2+ and Mg2+.


Assuntos
Cobre , Nanopartículas , Glifosato , Ligantes , Água , Oxalatos
12.
Redox Biol ; 70: 103044, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38266577

RESUMO

Hyperglycemia increases the heart sensitivity to ischemia-reperfusion (IR), but the underlying cellular mechanisms remain unclear. Mitochondrial dynamics (the processes that govern mitochondrial morphology and their interactions with other organelles, such as the reticulum), has emerged as a key factor in the heart vulnerability to IR. However, it is unknown whether mitochondrial dynamics contributes to hyperglycemia deleterious effect during IR. We hypothesized that (i) the higher heart vulnerability to IR in hyperglycemic conditions could be explained by hyperglycemia effect on the complex interplay between mitochondrial dynamics, Ca2+ homeostasis, and reactive oxygen species (ROS) production; and (ii) the activation of DRP1, a key regulator of mitochondrial dynamics, could play a central role. Using transmission electron microscopy and proteomic analysis, we showed that the interactions between sarcoplasmic reticulum and mitochondria and mitochondrial fission were increased during IR in isolated rat hearts perfused with a hyperglycemic buffer compared with hearts perfused with a normoglycemic buffer. In isolated mitochondria and cardiomyocytes, hyperglycemia increased mitochondrial ROS production and Ca2+ uptake. This was associated with higher RyR2 instability. These results could contribute to explain the early mPTP activation in mitochondria from isolated hearts perfused with a hyperglycemic buffer and in hearts from streptozotocin-treated rats (to increase the blood glucose). DRP1 inhibition by Mdivi-1 during the hyperglycemic phase and before IR induction, normalized Ca2+ homeostasis, ROS production, mPTP activation, and reduced the heart sensitivity to IR in streptozotocin-treated rats. In conclusion, hyperglycemia-dependent DRP1 activation results in higher reticulum-mitochondria calcium exchange that contribute to the higher heart vulnerability to IR.


Assuntos
Dinaminas , Traumatismo por Reperfusão Miocárdica , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Ratos , Cálcio/metabolismo , Doença da Artéria Coronariana/metabolismo , Hiperglicemia/metabolismo , Mitocôndrias Cardíacas/metabolismo , Dinâmica Mitocondrial , Traumatismo por Reperfusão Miocárdica/metabolismo , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Reperfusão , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Estreptozocina/metabolismo , Estreptozocina/farmacologia , Dinaminas/metabolismo
13.
Int J Biol Macromol ; 256(Pt 1): 128116, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979765

RESUMO

Polyhydroxyalkanoates (PHA) are bioplastics which are well known as intracellular energy storage compounds and are produced in a large number of prokaryotic species. These bio-based inclusions are biodegradable, biocompatible and environmental friendly. Industrial production of, short chain and medium chain length PHA, involves the use of microorganisms and their enzymes. Priestia megaterium previously known as Bacillus megaterium is a well-recognized bacterium for producing short chain length PHA. This study focuses to characterize this bacterium for the production of medium chain length PHA, and a novel blend of both types of monomers having enhanced properties and versatile applications. Statistical analyses and simulations were used to demonstrate that cell dry weight can be derived as a function of OD600 and PHA content. Optimization of growth conditions resulted in the maximum PHA production as: 0. 05 g. g-x. H-1, where the rate of PHA production was 0.28 g L-1. H-1 and PHA concentration was 4.94 g. L-1. This study also demonstrated FTIR to be a semi quantitative tool for PHA production. Moreover, conversion of scl-PHA to mcl-PHA with reference to time intermissions using GC-FID are shown.


Assuntos
Bacillus megaterium , Poli-Hidroxialcanoatos , Bacillus megaterium/metabolismo , Fermentação , Glicerol/metabolismo , Carbono/metabolismo , Nitrogênio/metabolismo
14.
Chemosphere ; 346: 140543, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918530

RESUMO

Metal oxide (MO) coatings (e.g. TiO2, ZnO, and CuO) have shown great promise to inactivate pathogenic bacteria, maintain self-cleaning surfaces, and prevent infectious diseases spread via surface contact. Under light illumination, the antibacterial performance of photoactive MO coatings is determined by reactive oxygen species (ROS) generation. However, several drawbacks, such as photo-corrosion and rapid electron-hole recombination, hinder the ROS production of MO coatings and diminish their antibacterial efficiency. In this study, we employed polyaniline (PANI), an inexpensive and easy-to-synthesize conductive polymer, to fabricate polyaniline-metal oxide composite (PMC) films. The antibacterial performance of PMC films was tested using E. coli as the model bacterium and Lake Michigan water (LMW) as the background medium and revealed enhanced antibacterial performance relative to MO coatings alone (approximately 75-90 % kill of E. coli by PMC coatings in comparison to 20-40 % kill by MO coatings), which is explained by an increase in the ROS yields of PMC. However, with repeated use, the antibacterial performance of the PMC coatings is diminished due to deprotonation of the PANI in the neutral/slightly basic aqueous environment of LMW. Overall, PANI can enhance the antibacterial performance of MO coatings, but efforts need to be directed to preserve or regenerate PMC stability under environmental conditions and applications.


Assuntos
Escherichia coli , Óxidos , Espécies Reativas de Oxigênio , Antibacterianos/farmacologia , Bactérias
15.
Chemosphere ; 349: 140922, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101479

RESUMO

Drinking water treatment residuals (DWTRs) are produced from the coagulation and flocculation processes in conventional drinking water treatment. The abundant metal oxide content of these materials resulting from the use of coagulants, like alum and ferric chloride, has driven strong research interest into the reuse of DWTRs as sorptive materials. Using a suite of aluminum-based DWTRs, we provide new insights into Hg(II) sorption mechanisms. Experiments performed at circum-neutral pH show that sorption capacities are related to the amount of organic carbon/matter present in DWTRs. We found that carbon rich samples can scavenge about 9000 mg/kg of Hg, in contrast to 2000 mg/kg for lime based DWTRs. X-ray absorption spectroscopy (XAS) at the Hg L3 edge further characterizes mercury coordination. X-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) results point to a partial association of mercury with sulfur at low mass loadings, transitioning to a full association with oxygen/carbon at higher concentrations of sorbed Hg(II) and in DWTRs with limited sulfur content. These results suggest that sorption of Hg(II) is primarily controlled by the carbon/organic matter fraction of DWTRs, but not by the coagulants.


Assuntos
Água Potável , Mercúrio , Espectroscopia por Absorção de Raios X , Adsorção , Mercúrio/química , Carbono , Enxofre/química
16.
Curr Res Transl Med ; 71(4): 103428, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38016421

RESUMO

Mature T-cell and natural killer (NK)-cell neoplasms (MTNKNs) are a highly heterogeneous group of lymphomas that represent 10-15 % of lymphoid neoplasms and have usually an aggressive behavior. Diagnosis can be challenging due to their overlapping clinical, histological and immunophenotypic features. Genetic data are not a routine component of the diagnostic algorithm for most MTNKNs. Indeed, unlike B-cell lymphomas, the genomic landscape of MTNKNs is not fully understood. Only few characteristic rearrangements can be easily identified with conventional cytogenetic methods and are an integral part of the diagnostic criteria, for instance the t(14;14)/inv(14) or t(X;14) abnormality harbored by 95 % of patients with T-cell prolymphocytic leukemia, or the ALK gene translocation observed in some forms of anaplastic large cell lymphoma. However, advances in molecular and cytogenetic techniques have brought new insights into MTNKN pathogenesis. Several recurrent genetic alterations have been identified, such as chromosomal losses involving tumor suppressor genes (SETD2, CDKN2A, TP53) and gains involving oncogenes (MYC), activating mutations in signaling pathways (JAK-STAT, RAS), and epigenetic dysregulation, that have improved our understanding of these pathologies. This work provides an overview of the cytogenetics knowledge in MTNKNs in the context of the new World Health Organization classification and the International Consensus Classification of hematolymphoid tumors. It describes key genetic alterations and their clinical implications. It also proposes recommendations on cytogenetic methods for MTNKN diagnosis.


Assuntos
Hematologia , Linfoma , Humanos , Análise Citogenética/métodos , Células Matadoras Naturais , Linfócitos T
17.
Proc Biol Sci ; 290(2009): 20230948, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37876188

RESUMO

In variable environments, habitats that are rich in resources often carry a higher risk of predation. As a result, natural selection should favour individuals that balance allocation of time to foraging versus avoiding predation through an optimal decision-making process that maximizes fitness. The behavioural trade-off between resource acquisition and risk avoidance is expected to be particularly acute during gestation and lactation, when the energetic demands of reproduction peak. Here, we investigated how reproductive female roe deer adjust their foraging activity and habitat use during the birth period to manage this trade-off compared with non-reproductive juveniles, and how parturition date constrains individual tactics of risk-resource management. Activity of reproductive females more than doubled immediately following parturition, when energy demand is highest. Furthermore, compared with non-reproductive juveniles, they increased their exposure to risk by using open habitat more during daytime and ranging closer to roads. However, these post-partum modifications in behaviour were particularly pronounced in late-parturient females who adopted a more risk-prone tactic, presumably to compensate for the growth handicap of their late-born offspring. In income breeders, individuals that give birth late may be constrained to trade risk avoidance for foraging during peak allocation to reproduction, with probable consequences for individual fitness.


Assuntos
Cervos , Humanos , Feminino , Animais , Reprodução , Ecossistema , Comportamento Predatório
18.
Sci Data ; 10(1): 643, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735452

RESUMO

Proteogenomic methodologies have enabled the identification of protein sequences in wild species without annotated genomes, shedding light on molecular mechanisms affected by pollution. However, proteomic resources for sentinel species are limited, and organ-level investigations are necessary to expand our understanding of their molecular biology. This study presents proteomic resources obtained from proteogenomic analyses of key organs (hepatopancreas, gills, hemolymph) from three established aquatic sentinel invertebrate species of interest in ecotoxicological/ecological research and environmental monitoring: Gammarus fossarum, Dreissena polymorpha, and Palaemon serratus. Proteogenomic analyses identified thousands of proteins for each species, with over 90% of them being annotated to putative function. Functional analysis validated the relevance of the proteomic atlases by revealing similarities in functional annotation of catalogues of proteins across analogous organs in the three species, while deep contrasts between functional profiles are delimited across different organs in the same organism. These organ-level proteomic atlases are crucial for future research on these sentinel animals, aiding in the evaluation of aquatic environmental risks and providing a valuable resource for ecotoxicological studies.


Assuntos
Invertebrados , Proteogenômica , Animais , Sequência de Aminoácidos , Proteômica , Espécies Sentinelas
19.
Ecol Evol ; 13(8): e10414, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37600488

RESUMO

Changes in the risk of exposure to infectious disease agents can be tracked through variations in antibody prevalence in vertebrate host populations. However, information on the temporal dynamics of the immune status of individuals is critical. If antibody levels persist a long time after exposure to an infectious agent, they could enable the efficient detection of the past circulation of the agent; if they persist only a short time, they could provide snap shots of recent exposure of sampled hosts. Here, we explored the temporal dynamics of seropositivity against Lyme disease agent Borrelia burgdorferi sensu lato (Bbsl) in individuals of a widespread medium-sized mammal species, the roe deer (Capreolus capreolus), in France. Using a modified commercially available immunoassay we tested 1554 blood samples obtained in two wild deer populations monitored from 2010 to 2020. Using multi-event capture-mark-recapture models, we estimated yearly population-, age-, and sex-specific rates of seroconversion and seroreversion after accounting for imperfect detection. The yearly seroconversion rates indicated a higher level of exposure in early (2010-2013) than in late years (2014-2019) to infected tick bites in both populations, without any detectable influence of sex or age. The relatively high rates of seroreversion indicated a short-term persistence of antibody levels against Bbsl in roe deer. This was confirmed by the analysis of samples collected on a set of captive individuals that were resampled several times a few weeks apart. Our findings show the potential usefulness of deer as a sentinel for tracking the risk of exposure to Lyme disease Bbsl, although further investigation on the details of the antibody response to Bbsl in this incompetent host would be useful. Our study also highlights the value of combining long-term capture-mark-recapture sampling and short-time analyses of serological data for wildlife populations exposed to infectious agents of relevance to wildlife epidemiology and human health.

20.
Sci Rep ; 13(1): 11586, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463979

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are taxonomically widespread copper-enzymes boosting biopolymers conversion (e.g. cellulose, chitin) in Nature. White-rot Polyporales, which are major fungal wood decayers, may possess up to 60 LPMO-encoding genes belonging to the auxiliary activities family 9 (AA9). Yet, the functional relevance of such multiplicity remains to be uncovered. Previous comparative transcriptomic studies of six Polyporales fungi grown on cellulosic substrates had shown the overexpression of numerous AA9-encoding genes, including some holding a C-terminal domain of unknown function ("X282"). Here, after carrying out structural predictions and phylogenetic analyses, we selected and characterized six AA9-X282s with different C-term modularities and atypical features hitherto unreported. Unexpectedly, after screening a large array of conditions, these AA9-X282s showed only weak binding properties to cellulose, and low to no cellulolytic oxidative activity. Strikingly, proteomic analysis revealed the presence of multiple phosphorylated residues at the surface of these AA9-X282s, including a conserved residue next to the copper site. Further analyses focusing on a 9 residues glycine-rich C-term extension suggested that it could hold phosphate-binding properties. Our results question the involvement of these AA9 proteins in the degradation of plant cell wall and open new avenues as to the divergence of function of some AA9 members.


Assuntos
Basidiomycota , Cobre , Filogenia , Cobre/metabolismo , Proteômica , Polissacarídeos/metabolismo , Celulose/metabolismo , Basidiomycota/metabolismo , Fosfatos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA