Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6703): 1429-1435, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38935712

RESUMO

Knowledge of Cambrian animal anatomy is limited by preservational processes that result in compaction, size bias, and incompleteness. We documented pristine three-dimensional (3D) anatomy of trilobites fossilized through rapid ash burial from a pyroclastic flow entering a shallow marine environment. Cambrian ellipsocephaloid trilobites from Morocco are articulated and undistorted, revealing exquisite details of the appendages and digestive system. Previously unknown anatomy includes a soft-tissue labrum attached to the hypostome, a slit-like mouth, and distinctive cephalic feeding appendages. Our findings resolve controversy over whether the trilobite hypostome is the labrum or incorporates it and establish crown-group euarthropod homologies in trilobites. This occurrence of moldic fossils with 3D soft parts highlights volcanic ash deposits in marine settings as an underexplored source for exceptionally preserved organisms.


Assuntos
Artrópodes , Fósseis , Erupções Vulcânicas , Animais , Artrópodes/anatomia & histologia , Artrópodes/classificação , Fósseis/anatomia & histologia , Marrocos
2.
Sci Bull (Beijing) ; 69(10): 1486-1494, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38472019

RESUMO

Sulfate reduction is an essential metabolism that maintains biogeochemical cycles in marine and terrestrial ecosystems. Sulfate reducers are exclusively prokaryotic, phylogenetically diverse, and may have evolved early in Earth's history. However, their origin is elusive and unequivocal fossils are lacking. Here we report a new microfossil, Qingjiangonema cambria, from ∼518-million-year-old black shales that yield the Qingjiang biota. Qingjiangonema is a long filamentous form comprising hundreds of cells filled by equimorphic and equidimensional pyrite microcrystals with a light sulfur isotope composition. Multiple lines of evidence indicate Qingjiangonema was a sulfate-reducing bacterium that exhibits similar patterns of cell organization to filamentous forms within the phylum Desulfobacterota, including the sulfate-reducing Desulfonema and sulfide-oxidizing cable bacteria. Phylogenomic analyses confirm separate, independent origins of multicellularity in Desulfonema and in cable bacteria. Molecular clock analyses infer that the Desulfobacterota, which encompass a majority of sulfate-reducing taxa, diverged ∼2.41 billion years ago during the Paleoproterozoic Great Oxygenation Event, while cable bacteria diverged ∼0.56 billion years ago during or immediately after the Neoproterozoic Oxygenation Event. Taken together, we interpret Qingjiangonema as a multicellular sulfate-reducing microfossil and propose that cable bacteria evolved from a multicellular filamentous sulfate-reducing ancestor. We infer that the diversification of the Desulfobacterota and the origin of cable bacteria may have been responses to oxygenation events in Earth's history.


Assuntos
Fósseis , Filogenia , Sulfatos , Sulfatos/metabolismo , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Oxirredução , Planeta Terra , Evolução Biológica , Oxigênio/metabolismo , Sedimentos Geológicos/microbiologia , Sulfetos/metabolismo , China , Ferro
3.
Sci Adv ; 10(13): eadl3452, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552008

RESUMO

The Cambrian explosion, one of the most consequential biological revolutions in Earth history, occurred in two phases separated by the Sinsk event, the first major extinction of the Phanerozoic. Trilobite fossil data show that Series 2 strata in the Ross Orogen, Antarctica, and Delamerian Orogen, Australia, record nearly identical and synchronous tectono-sedimentary shifts marking the Sinsk event. These resulted from an abrupt pulse of contractional supracrustal deformation on both continents during the Pararaia janeae trilobite Zone. The Sinsk event extinction was triggered by initial Ross/Delamerian supracrustal contraction along the edge of Gondwana, which caused a cascading series of geodynamic, paleoenvironmental, and biotic changes, including (i) loss of shallow marine carbonate habitats along the Gondwanan margin; (ii) tectonic transformation to extensional tectonics within the Gondwanan interior; (iii) extrusion of the Kalkarindji large igneous province; (iv) release of large volumes of volcanic gasses; and (v) rapid climatic change, including incursions of marine anoxic waters and collapse of shallow marine ecosystems.

4.
Sci Adv ; 10(13): eadk2152, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552018

RESUMO

The evolution of oxygen cycles on Earth's surface has been regulated by the balance between molecular oxygen production and consumption. The Neoproterozoic-Paleozoic transition likely marks the second rise in atmospheric and oceanic oxygen levels, widely attributed to enhanced burial of organic carbon. However, it remains disputed how marine organic carbon production and burial respond to global environmental changes and whether these feedbacks trigger global oxygenation during this interval. Here, we report a large lithium isotopic and elemental dataset from marine mudstones spanning the upper Neoproterozoic to middle Cambrian [~660 million years ago (Ma) to 500 Ma]. These data indicate a dramatic increase in continental clay formation after ~525 Ma, likely linked to secular changes in global climate and compositions of the continental crust. Using a global biogeochemical model, we suggest that intensified continental weathering and clay delivery to the oceans could have notably increased the burial efficiency of organic carbon and facilitated greater oxygen accumulation in the earliest Paleozoic oceans.

5.
R Soc Open Sci ; 10(4): 221400, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37122950

RESUMO

Early annelid evolution is mostly known from 13 described species from Cambrian Burgess Shale-type Lagerstätten. We introduce a new exceptionally well-preserved polychaete, Ursactis comosa gen. et sp. nov., from the Burgess Shale (Wuliuan Stage). This small species (3-15 mm) is the most abundant Cambrian polychaete known to date. Most specimens come from Tokumm Creek, a new Burgess Shale locality in northern Kootenay National Park, British Columbia, Canada. Ursactis has a pair of large palps, thin peristomial neurochaetae and biramous parapodia bearing similarly sized capillary neurochaetae and notochaetae, except for segments six to nine, which also have longer notochaetae. The number of segments in this polychaete range between 8 and 10 with larger individuals having 10 segments. This number of segments in Ursactis is remarkably small compared with other polychaetes, including modern forms. Specimens with 10 segments show significant size variations, and the length of each segment increases with the body length, indicating that body growth was primarily achieved by increasing the size of existing segments rather than adding new ones. This contrasts with most modern polychaetes, which typically have a larger number of segments through additions of segments throughout life. The inferred growth pattern in Ursactis suggests that annelids had evolved control over segment addition by the mid-Cambrian.

6.
Bioessays ; 45(3): e2200167, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36693795

RESUMO

Paleoneuranatomy is an emerging subfield of paleontological research with great potential for the study of evolution. However, the interpretation of fossilized nervous tissues is a difficult task and presently lacks a rigorous methodology. We critically review here cases of neural tissue preservation reported in Cambrian arthropods, following a set of fundamental paleontological criteria for their recognition. These criteria are based on a variety of taphonomic parameters and account for morphoanatomical complexity. Application of these criteria shows that firm evidence for fossilized nervous tissues is less abundant and detailed than previously reported, and we synthesize here evidence that has stronger support. We argue that the vascular system, and in particular its lacunae, may be central to the understanding of many of the fossilized peri-intestinal features known across Cambrian arthropods. In conclusion, our results suggest the need for caution in the interpretation of evidence for fossilized neural tissue, which will increase the accuracy of evolutionary scenarios. Also see the video abstract here: https://youtu.be/2_JlQepRTb0.


Assuntos
Artrópodes , Tecido Nervoso , Animais , Evolução Biológica , Fósseis , Artrópodes/anatomia & histologia , Artrópodes/fisiologia , Paleontologia
8.
Science ; 363(6433): 1338-1342, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30898931

RESUMO

Burgess Shale-type fossil Lagerstätten provide the best evidence for deciphering the biotic patterns and magnitude of the Cambrian explosion. Here, we report a Lagerstätte from South China, the Qingjiang biota (~518 million years old), which is dominated by soft-bodied taxa from a distal shelf setting. The Qingjiang biota is distinguished by pristine carbonaceous preservation of labile organic features, a very high proportion of new taxa (~53%), and preliminary taxonomic diversity that suggests it could rival the Chengjiang and Burgess Shale biotas. Defining aspects of the Qingjiang biota include a high abundance of cnidarians, including both medusoid and polypoid forms; new taxa resembling extant kinorhynchs; and abundant larval or juvenile forms. This distinctive composition holds promise for providing insights into the evolution of Cambrian ecosystems across environmental gradients.


Assuntos
Evolução Biológica , Biota , Fósseis , Animais , China , Larva , Minerais
9.
Nat Commun ; 5: 3210, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24513643

RESUMO

Burgess Shale-type fossil assemblages provide the best evidence of the 'Cambrian explosion'. Here we report the discovery of an extraordinary new soft-bodied fauna from the Burgess Shale. Despite its proximity (ca. 40 km) to Walcott's original locality, the Marble Canyon fossil assemblage is distinct, and offers new insights into the initial diversification of metazoans, their early morphological disparity, and the geographic ranges and longevity of many Cambrian taxa. The arthropod-dominated assemblage is remarkable for its high density and diversity of soft-bodied fossils, as well as for its large proportion of new species (22% of total diversity) and for the preservation of hitherto unreported anatomical features, including in the chordate Metaspriggina and the arthropod Mollisonia. The presence of the stem arthropods Misszhouia and Primicaris, previously known only from the early Cambrian of China, suggests that the palaeogeographic ranges and longevity of Burgess Shale taxa may be underestimated.


Assuntos
Artrópodes , Fósseis , Animais , Carbonato de Cálcio , Canadá , Minerais , Filogenia , Filogeografia
10.
Nature ; 484(7394): 363-6, 2012 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-22517163

RESUMO

The transition between the Proterozoic and Phanerozoic eons, beginning 542 million years (Myr) ago, is distinguished by the diversification of multicellular animals and by their acquisition of mineralized skeletons during the Cambrian period. Considerable progress has been made in documenting and more precisely correlating biotic patterns in the Neoproterozoic-Cambrian fossil record with geochemical and physical environmental perturbations, but the mechanisms responsible for those perturbations remain uncertain. Here we use new stratigraphic and geochemical data to show that early Palaeozoic marine sediments deposited approximately 540-480 Myr ago record both an expansion in the area of shallow epicontinental seas and anomalous patterns of chemical sedimentation that are indicative of increased oceanic alkalinity and enhanced chemical weathering of continental crust. These geochemical conditions were caused by a protracted period of widespread continental denudation during the Neoproterozoic followed by extensive physical reworking of soil, regolith and basement rock during the first continental-scale marine transgression of the Phanerozoic. The resultant globally occurring stratigraphic surface, which in most regions separates continental crystalline basement rock from much younger Cambrian shallow marine sedimentary deposits, is known as the Great Unconformity. Although Darwin and others have interpreted this widespread hiatus in sedimentation on the continents as a failure of the geologic record, this palaeogeomorphic surface represents a unique physical environmental boundary condition that affected seawater chemistry during a time of profound expansion of shallow marine habitats. Thus, the formation of the Great Unconformity may have been an environmental trigger for the evolution of biomineralization and the 'Cambrian explosion' of ecologic and taxonomic diversity following the Neoproterozoic emergence of animals.


Assuntos
Evolução Biológica , Sedimentos Geológicos/química , Animais , Organismos Aquáticos/classificação , Organismos Aquáticos/citologia , Ecossistema , Fósseis , Geologia , História Antiga , Concentração de Íons de Hidrogênio , América do Norte , Água do Mar/química , Solo/química
11.
Proc Natl Acad Sci U S A ; 109(14): 5180-4, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22392974

RESUMO

Exceptionally preserved fossil biotas of the Burgess Shale and a handful of other similar Cambrian deposits provide rare but critical insights into the early diversification of animals. The extraordinary preservation of labile tissues in these geographically widespread but temporally restricted soft-bodied fossil assemblages has remained enigmatic since Walcott's initial discovery in 1909. Here, we demonstrate the mechanism of Burgess Shale-type preservation using sedimentologic and geochemical data from the Chengjiang, Burgess Shale, and five other principal Burgess Shale-type deposits. Sulfur isotope evidence from sedimentary pyrites reveals that the exquisite fossilization of organic remains as carbonaceous compressions resulted from early inhibition of microbial activity in the sediments by means of oxidant deprivation. Low sulfate concentrations in the global ocean and low-oxygen bottom water conditions at the sites of deposition resulted in reduced oxidant availability. Subsequently, rapid entombment of fossils in fine-grained sediments and early sealing of sediments by pervasive carbonate cements at bed tops restricted oxidant flux into the sediments. A permeability barrier, provided by bed-capping cements that were emplaced at the seafloor, is a feature that is shared among Burgess Shale-type deposits, and resulted from the unusually high alkalinity of Cambrian oceans. Thus, Burgess Shale-type preservation of soft-bodied fossil assemblages worldwide was promoted by unique aspects of early Paleozoic seawater chemistry that strongly impacted sediment diagenesis, providing a fundamentally unique record of the immediate aftermath of the "Cambrian explosion."

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...