Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Blood ; 143(17): 1738-1751, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38215390

RESUMO

ABSTRACT: In the effort to improve immunophenotyping and minimal residual disease (MRD) assessment in acute lymphoblastic leukemia (ALL), the international Berlin-Frankfurt-Münster (iBFM) Flow Network introduced the myelomonocytic marker CD371 for a large prospective characterization with a long follow-up. In the present study, we aimed to investigate the clinical and biological features of CD371-positive (CD371pos) pediatric B-cell precursor ALL (BCP-ALL). From June 2014 to February 2017, 1812 pediatric patients with newly diagnosed BCP-ALLs enrolled in trial AIEOP-BFM ALL 2009 were evaluated as part of either a screening (n = 843, Italian centers) or validation cohort (n = 969, other iBFM centers). Laboratory assessment at diagnosis consisted of morphological, immunophenotypic, and genetic analysis. Response assessment relied on morphology, multiparametric flow cytometry (MFC), and polymerase chain reaction (PCR)-MRD. At diagnosis, 160 of 1812 (8.8%) BCP-ALLs were CD371pos. This correlated with older age, lower ETV6::RUNX1 frequency, immunophenotypic immaturity (all P < .001), and strong expression of CD34 and of CD45 (P < .05). During induction therapy, CD371pos BCP-ALLs showed a transient myelomonocytic switch (mm-SW: up to 65.4% of samples at day 15) and an inferior response to chemotherapy (slow early response, P < .001). However, the 5-year event-free survival was 88.3%. Among 420 patients from the validation cohort, 27 of 28 (96.4%) cases positive for DUX4-fusions were CD371pos. In conclusion, in the largest pediatric cohort, CD371 is the most sensitive marker of transient mm-SW, whose recognition is essential for proper MFC MRD assessment. CD371pos is associated to poor early treatment response, although a good outcome can be reached after MRD-based ALL-related therapies.


Assuntos
Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Criança , Masculino , Feminino , Pré-Escolar , Adolescente , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidade , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Lactente , Neoplasia Residual/diagnóstico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Tetraspaninas/genética , Tetraspaninas/metabolismo , Imunofenotipagem , Linhagem da Célula
2.
Cytometry A ; 105(1): 24-35, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37776305

RESUMO

T-lineage acute lymphoblastic leukemia (T-ALL) accounts for about 15% of pediatric and about 25% of adult ALL cases. Minimal/measurable residual disease (MRD) assessed by flow cytometry (FCM) is an important prognostic indicator for risk stratification. In order to assess the MRD a limited number of antibodies directed against the most discriminative antigens must be selected. We propose a pipeline for evaluating the influence of different markers for cell population classification in FCM data. We use linear support vector machine, fitted to each sample individually to avoid issues with patient and laboratory variations. The best separating hyperplane direction as well as the influence of omitting specific markers is considered. Ninety-one bone marrow samples of 43 pediatric T-ALL patients from five reference laboratories were analyzed by FCM regarding marker importance for blast cell identification using combinations of eight different markers. For all laboratories, CD48 and CD99 were among the top three markers with strongest contribution to the optimal hyperplane, measured by median separating hyperplane coefficient size for all samples per center and time point (diagnosis, Day 15, Day 33). Based on the available limited set tested (CD3, CD4, CD5, CD7, CD8, CD45, CD48, CD99), our findings prove that CD48 and CD99 are useful markers for MRD monitoring in T-ALL. The proposed pipeline can be applied for evaluation of other marker combinations in the future.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Adulto , Criança , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/diagnóstico , Citometria de Fluxo , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Neoplasia Residual/diagnóstico , Linfócitos T
3.
Cytometry A ; 105(2): 112-123, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37707318

RESUMO

CD19-targeted chimeric antigen receptor T (CAR-T) cell therapy has shown unprecedented results in patients with B cell relapsed/refractory acute lymphoblastic leukemia (R/R-ALL) and B cell non-Hodgkin lymphomas where no other curative options are available. In vivo monitoring of CAR-T cell kinetics is fundamental to understand the correlation between CAR-T cells expansion and persistence with treatment response and toxicity development. The aim of this study was to define a robust, sensitive, and universal method for CAR-T cell detection using flow cytometry. We set up and compared with each other three assays for CD19 CAR-T cell detection, all based on commercially available reagents. All methods used a recombinant human CD19 protein fragment recognized by the single-chain variable fragment of the CAR construct. The two indirect staining assays (CD19his + APC-conjugated antihistidine antibody and CD19bio + APC-conjugated antibiotin antibody) showed better sensitivity and specificity compared with the direct staining with CD19-FITC, and CD19his had a better cost-effective profile. We validated CAR detection with CD19his with parallel quantitative real-time polymerase chain reaction data and we could demonstrate a strong positive correlation. We also showed that CD19his staining can be easily included in a multicolor flow cytometry panel to achieve additional information about the cell phenotype of CAR-T cell positive subpopulations. Finally, this method can be used for different anti-CD19 CAR-T cell products and for different sample sources. These data demonstrate that detection of CAR-T cells by CD19his flow cytometry staining is a reliable, robust, and broadly applicable tool for in vivo monitoring of CAR-T cells.


Assuntos
Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Citometria de Fluxo/métodos , Imunoterapia Adotiva/métodos , Antígenos CD19 , Anticorpos , Linfócitos T
4.
Haematologica ; 109(2): 521-532, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37534527

RESUMO

Diagnostic criteria for juvenile myelomonocytic leukemia (JMML) are currently well defined, however in some patients diagnosis still remains a challenge. Flow cytometry is a well established tool for diagnosis and follow-up of hematological malignancies, nevertheless it is not routinely used for JMML diagnosis. Herewith, we characterized the CD34+ hematopoietic precursor cells collected from 31 children with JMML using a combination of standardized EuroFlow antibody panels to assess the ability to discriminate JMML cells from normal/reactive bone marrow cell as controls (n=29) or from cells of children with other hematological diseases mimicking JMML (n=9). CD34+ precursors in JMML showed markedly reduced B-cell and erythroid-committed precursors compared to controls, whereas monocytic and CD7+ lymphoid precursors were significantly expanded. Moreover, aberrant immunophenotypes were consistently present in CD34+ precursors in JMML, while they were virtually absent in controls. Multivariate logistic regression analysis showed that combined assessment of the number of CD34+CD7+ lymphoid precursors and CD34+ aberrant precursors or erythroid precursors had a great potential in discriminating JMMLs versus controls. Importantly our scoring model allowed highly efficient discrimination of truly JMML versus patients with JMML-like diseases. In conclusion, we show for the first time that CD34+ precursors from JMML patients display a unique immunophenotypic profile which might contribute to a fast and accurate diagnosis of JMML worldwide by applying an easy to standardize single eight-color antibody combination.


Assuntos
Leucemia Mielomonocítica Juvenil , Criança , Humanos , Leucemia Mielomonocítica Juvenil/diagnóstico , Leucemia Mielomonocítica Juvenil/genética , Citometria de Fluxo , Antígenos CD34/genética , Monócitos/patologia
5.
Bone Marrow Transplant ; 59(2): 171-177, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37935782

RESUMO

Analysis of donor-recipient chimerism after hematopoietic stem cell transplantation (HSCT) is of pivotal importance for patient's clinical management, especially in the context of mixed chimerism. Patients are routinely monitored for chimerism in sorted subsets of peripheral blood cells. However, measurement of chimerism in sorted immune cell subsets is technically challenging and time consuming. We here propose a novel, flow cytometry-based approach to detect donor cell chimerism in sex-mismatched HSCT. We exploit RNA PrimeFlow™ system, based on RNA hybridization, to detect mRNA from a lysine demethylase encoded by Y chromosome, KDM5D. This approach allows to distinguish male and female derived cells with around 1% sensitivity. The procedure can be coupled with multiparametric immunophenotyping to assess chimerism in specific immune cell subsets without the need for prior FACS-sorting. We apply this method to a cohort of HSCT patients (n = 10) and we show that it is consistent with standard PCR-based method. We also show that different T lymphocyte subsets display variable degrees of donor chimerism, especially in CD8+ T cell compartment where we observe an enrichment for recipient chimerism in central memory T cells. This method can be exploited to advance current knowledge on immune reconstitution focusing on specific subsets avoiding prior FACS-sorting.


Assuntos
Quimerismo , Transplante de Células-Tronco Hematopoéticas , Humanos , Masculino , Feminino , Citometria de Fluxo , RNA , Transplante de Células-Tronco Hematopoéticas/métodos , Subpopulações de Linfócitos T , Quimeras de Transplante , Antígenos de Histocompatibilidade Menor , Histona Desmetilases/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-37740440

RESUMO

Presence of minimal residual disease (MRD), detected by flow cytometry, is an important prognostic biomarker in the management of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). However, data-analysis remains mainly expert-dependent. In this study, we designed and validated an Automated Gating & Identification (AGI) tool for MRD analysis in BCP-ALL patients using the two tubes of the EuroFlow 8-color MRD panel. The accuracy, repeatability, and reproducibility of the AGI tool was validated in a multicenter study using bone marrow follow-up samples from 174 BCP-ALL patients, stained with the EuroFlow BCP-ALL MRD panel. In these patients, MRD was assessed both by manual analysis and by AGI tool supported analysis. Comparison of MRD levels obtained between both approaches showed a concordance rate of 83%, with comparable concordances between MRD tubes (tube 1, 2 or both), treatment received (chemotherapy versus targeted therapy) and flow cytometers (FACSCanto versus FACSLyric). After review of discordant cases by additional experts, the concordance increased to 97%. Furthermore, the AGI tool showed excellent intra-expert concordance (100%) and good inter-expert concordance (90%). In addition to MRD levels, also percentages of normal cell populations showed excellent concordance between manual and AGI tool analysis. We conclude that the AGI tool may facilitate MRD analysis using the EuroFlow BCP-ALL MRD protocol and will contribute to a more standardized and objective MRD assessment. However, appropriate training is required for the correct analysis of MRD data.

7.
Intensive Care Med Exp ; 11(1): 56, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37620640

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a significant cause of death and disability, with no effective neuroprotective drugs currently available for its treatment. Mesenchymal stromal cell (MSC)-based therapy shows promise as MSCs release various soluble factors that can enhance the injury microenvironment through processes, such as immunomodulation, neuroprotection, and brain repair. Preclinical studies across different TBI models and severities have demonstrated that MSCs can improve functional and structural outcomes. Moreover, clinical evidence supports the safety of third-party donor bank-stored MSCs in adult subjects. Building on this preclinical and clinical data, we present the protocol for an academic, investigator-initiated, multicenter, double-blind, randomised, placebo-controlled, adaptive phase II dose-finding study aiming to evaluate the safety and efficacy of intravenous administration of allogeneic bone marrow-derived MSCs to severe TBI patients within 48 h of injury. METHODS/DESIGN: The study will be conducted in two steps. Step 1 will enrol 42 patients, randomised in a 1:1:1 ratio to receive 80 million MSCs, 160 million MSCs or a placebo to establish safety and identify the most promising dose. Step 2 will enrol an additional 36 patients, randomised in a 1:1 ratio to receive the selected dose of MSCs or placebo. The activity of MSCs will be assessed by quantifying the plasmatic levels of neurofilament light (NfL) at 14 days as a biomarker of neuronal damage. It could be a significant breakthrough if the study demonstrates the safety and efficacy of MSC-based therapy for severe TBI patients. The results of this trial could inform the design of a phase III clinical trial aimed at establishing the efficacy of the first neurorestorative therapy for TBI. DISCUSSION: Overall, the MATRIx trial is a critical step towards developing an effective treatment for TBI, which could significantly improve the lives of millions worldwide affected by this debilitating condition. Trial Registration EudraCT: 2022-000680-49.

8.
Front Immunol ; 14: 1186224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359560

RESUMO

Advanced Therapy Medicinal Products (ATMPs) based on somatic cells expanded in vitro, with or without genetic modification, is a rapidly growing area of drug development, even more so following the marketing approval of several such products. ATMPs are produced according to Good Manufacturing Practice (GMP) in authorized laboratories. Potency assays are a fundamental aspect of the quality control of the end cell products and ideally could become useful biomarkers of efficacy in vivo. Here we summarize the state of the art with regard to potency assays used for the assessment of the quality of the major ATMPs used clinic settings. We also review the data available on biomarkers that may substitute more complex functional potency tests and predict the efficacy in vivo of these cell-based drugs.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Desenvolvimento de Medicamentos , Controle de Qualidade
9.
Cancers (Basel) ; 15(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37173879

RESUMO

Background: Chimeric antigen receptor (CAR)-T cells represent a potentially curative strategy for patients with relapsed or refractory (R/R) B-cell malignancies. To elucidate a possible host immune activation following CAR-T-cell infusion, we investigated the effects of tisagenlecleucel administration on the patients' immune populations in 25 patients with R/R diffuse large B-cell lymphoma (DLBCL) and B-lineage acute lymphoblastic leukemia (B-ALL). Methods: The modulation of CAR-T cells over time, the numeric changes, as well as the cytokine production capability of different lymphocyte populations and circulating cytokine levels, were analyzed. Results: Our results confirmed the ability of tisagenlecleucel to control the disease, with an overall response observed in 84.6% of DLBCL and in 91.7% of B-ALL patients at 1-month post-infusion, and showed that most patients who subsequently relapsed could undergo further treatment. Interestingly, we could document a significant increase in CD3+, CD4+, CD8+, and NK cells over time, as well as a decrease in Treg cells, and an increased IFNγ and TNFα production by T lymphocytes. Conclusions: Taken together, our results indicate that in patients with DLBCL and B-ALL, the administration of tisagenlecleucel is capable of inducing a marked and prolonged in vivo modulation/reshaping of the host immune system, both in children and adults.

10.
J Clin Oncol ; 41(19): 3499-3511, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141547

RESUMO

PURPOSE: The International Berlin-Frankfurt-Münster (BFM) study group conducted a study on pediatric acute lymphoblastic leukemia (ALL). Minimal residual disease (MRD) was assessed using flow cytometry (FCM), and the impact of early intensification and methotrexate (MTX) dose on survival was evaluated. PATIENTS AND METHODS: We included 6,187 patients younger than 19 years. MRD by FCM refined the risk group definition previously used in the ALL intercontinental-BFM 2002 study on the basis of age, WBC count, unfavorable genetic aberrations, and treatment response measured morphologically. Patients at intermediate risk (IR) and high risk (HR) were randomly assigned to protocol augmented protocol I phase B (IB) versus IB regimen. MTX doses of 2 versus 5 g/m2 every 2 weeks, four times, were evaluated in precursor B-cell-ALL (pcB-ALL) IR. RESULTS: The 5-year event-free survival (EFS ± SE) and overall survival (OS ± SE) rates were 75.2% ± 0.6% and 82.6% ± 0.5%, respectively. Their values in risk groups were standard risk (n = 624), 90.7% ± 1.4% and 94.7% ± 1.1%; IR (n = 4,111), 77.9% ± 0.7% and 85.7% ± 0.6%; and HR (n = 1,452), 60.8% ± 1.5% and 68.4% ± 1.4%, respectively. MRD by FCM was available in 82.6% of cases. The 5-year EFS rates in patients randomly assigned to protocol IB (n = 1,669) and augmented IB (n = 1,620) were 73.6% ± 1.2% and 72.8% ± 1.2%, respectively (P = .55), while those in patients receiving MTX doses of 2 g/m2 (n = 1,056) and MTX 5 g/m2 (n = 1,027) were 78.8% ± 1.4% and 78.9% ± 1.4%, respectively (P = .84). CONCLUSION: The MRDs were successfully assessed using FCM. An MTX dose of 2 g/m2 was effective in preventing relapse in non-HR pcB-ALL. Augmented IB showed no advantages over the standard IB.[Media: see text].


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Lactente , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Metotrexato/uso terapêutico , Fatores de Risco , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Intervalo Livre de Doença , Resultado do Tratamento
11.
Nat Commun ; 14(1): 2935, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217509

RESUMO

Resistance to glucocorticoids (GC) is associated with an increased risk of relapse in B-cell progenitor acute lymphoblastic leukemia (BCP-ALL). Performing transcriptomic and single-cell proteomic studies in healthy B-cell progenitors, we herein identify coordination between the glucocorticoid receptor pathway with B-cell developmental pathways. Healthy pro-B cells most highly express the glucocorticoid receptor, and this developmental expression is conserved in primary BCP-ALL cells from patients at diagnosis and relapse. In-vitro and in vivo glucocorticoid treatment of primary BCP-ALL cells demonstrate that the interplay between B-cell development and the glucocorticoid pathways is crucial for GC resistance in leukemic cells. Gene set enrichment analysis in BCP-ALL cell lines surviving GC treatment show enrichment of B cell receptor signaling pathways. In addition, primary BCP-ALL cells surviving GC treatment in vitro and in vivo demonstrate a late pre-B cell phenotype with activation of PI3K/mTOR and CREB signaling. Dasatinib, a multi-kinase inhibitor, most effectively targets this active signaling in GC-resistant cells, and when combined with glucocorticoids, results in increased cell death in vitro and decreased leukemic burden and prolonged survival in an in vivo xenograft model. Targeting the active signaling through the addition of dasatinib may represent a therapeutic approach to overcome GC resistance in BCP-ALL.


Assuntos
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Dasatinibe/farmacologia , Dasatinibe/uso terapêutico , Receptores de Glucocorticoides/genética , Apoptose , Proteômica , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Recidiva , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral
12.
Nat Med ; 29(1): 75-85, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36624312

RESUMO

Innovative pro-regenerative treatment strategies for progressive multiple sclerosis (PMS), combining neuroprotection and immunomodulation, represent an unmet need. Neural precursor cells (NPCs) transplanted in animal models of multiple sclerosis have shown preclinical efficacy by promoting neuroprotection and remyelination by releasing molecules sustaining trophic support and neural plasticity. Here we present the results of STEMS, a prospective, therapeutic exploratory, non-randomized, open-label, single-dose-finding phase 1 clinical trial ( NCT03269071 , EudraCT 2016-002020-86), performed at San Raffaele Hospital in Milan, Italy, evaluating the feasibility, safety and tolerability of intrathecally transplanted human fetal NPCs (hfNPCs) in 12 patients with PMS (with evidence of disease progression, Expanded Disability Status Scale ≥6.5, age 18-55 years, disease duration 2-20 years, without any alternative approved therapy). The safety primary outcome was reached, with no severe adverse reactions related to hfNPCs at 2-year follow-up, clearly demonstrating that hfNPC therapy in PMS is feasible, safe and tolerable. Exploratory secondary analyses showed a lower rate of brain atrophy in patients receiving the highest dosage of hfNPCs and increased cerebrospinal fluid levels of anti-inflammatory and neuroprotective molecules. Although preliminary, these results support the rationale and value of future clinical studies with the highest dose of hfNPCs in a larger cohort of patients.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Esclerose Múltipla , Células-Tronco Neurais , Adolescente , Adulto , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Esclerose Múltipla/terapia , Estudos Prospectivos , Transplante de Células-Tronco/métodos
13.
Front Genet ; 13: 1058468, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36482893

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is a subtype of ALL involving the malignant expansion of T-cell progenitors. It is driven by a number of different possible genetic lesions, including mutations in genes encoding for ribosomal proteins (RPs). These are structural constituents of ribosomes, ubiquitous effectors of protein synthesis. Albeit the R98S mutation in RPL10, recurring with a higher frequency among RP mutations, has been extensively studied, less is known about the contribution of mutations occurring in other RPs. Alterations affecting translational machinery may not be well tolerated by cells, and there may be a selective pressure that determines the emergence of mutations with a compensatory effect. To explore this hypothesis, we sequenced the exomes of a cohort of 37 pediatric patients affected by T-ALL, and analyzed them to explore the co-occurrence of mutations in genes involved in ribosome biogenesis (including RPs) and translational control, and in known T-ALL driver genes. We found that some of the mutations in these sub-classes of genes tend to cluster together in different patients, indicating that their co-occurrence may confer some kind of advantage to leukemia cells. In addition, our sequencing highlighted the presence of a novel mutation in RPL10, namely the Q123R, which we found associated with a defect in protein synthesis. Our findings indicate that genetic alterations involving ribosome biogenesis and translational control should be carefully considered in the context of precision medicine in T-ALL.

14.
Cancers (Basel) ; 14(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35804860

RESUMO

For the last two decades, measurable residual disease (MRD) has become one of the most powerful independent prognostic factors in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). However, the effect of therapy on the bone marrow (BM) microenvironment and its potential relationship with the MRD status and disease free survival (DFS) still remain to be investigated. Here we analyzed the distribution of mesenchymal stem cells (MSC) and endothelial cells (EC) in the BM of treated BCP-ALL patients, and its relationship with the BM MRD status and patient outcome. For this purpose, the BM MRD status and EC/MSC regeneration profile were analyzed by multiparameter flow cytometry (MFC) in 16 control BM (10 children; 6 adults) and 1204 BM samples from 347 children and 100 adult BCP-ALL patients studied at diagnosis (129 children; 100 adults) and follow-up (824 childhood samples; 151 adult samples). Patients were grouped into a discovery cohort (116 pediatric BCP-ALL patients; 338 samples) and two validation cohorts (74 pediatric BCP-ALL, 211 samples; and 74 adult BCP-ALL patients; 134 samples). Stromal cells (i.e., EC and MSC) were detected at relatively low frequencies in all control BM (16/16; 100%) and in most BCP-ALL follow-up samples (874/975; 90%), while they were undetected in BCP-ALL BM at diagnosis. In control BM samples, the overall percentage of EC plus MSC was higher in children than adults (p = 0.011), but with a similar EC/MSC ratio in both groups. According to the MRD status similar frequencies of both types of BM stromal cells were detected in BCP-ALL BM studied at different time points during the follow-up. Univariate analysis (including all relevant prognostic factors together with the percentage of stromal cells) performed in the discovery cohort was used to select covariates for a multivariate Cox regression model for predicting patient DFS. Of note, an increased percentage of EC (>32%) within the BCP-ALL BM stromal cell compartment at day +78 of therapy emerged as an independent unfavorable prognostic factor for DFS in childhood BCP-ALL in the discovery cohort­hazard ratio (95% confidence interval) of 2.50 (1−9.66); p = 0.05­together with the BM MRD status (p = 0.031). Further investigation of the predictive value of the combination of these two variables (%EC within stromal cells and MRD status at day +78) allowed classification of BCP-ALL into three risk groups with median DFS of: 3.9, 3.1 and 1.1 years, respectively (p = 0.001). These results were confirmed in two validation cohorts of childhood BCP-ALL (n = 74) (p = 0.001) and adult BCP-ALL (n = 40) (p = 0.004) treated at different centers. In summary, our findings suggest that an imbalanced EC/MSC ratio in BM at day +78 of therapy is associated with a shorter DFS of BCP-ALL patients, independently of their MRD status. Further prospective studies are needed to better understand the pathogenic mechanisms involved.

15.
Cytotherapy ; 24(5): 544-556, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35177338

RESUMO

BACKGROUND AIMS: Advanced therapy medicinal products (ATMPs) are novel drugs based on genes, cells or tissues developed to treat many different diseases. Stability studies of each new ATMP need to be performed to define its shelf life and guarantee efficacy and safety upon infusion, and these are presently based on guidelines originally drafted for standard pharmaceutical drugs, which have properties and are stored in conditions quite different from cell products. The aim of this report is to provide evidence-based information for stability studies on ATMPs that will facilitate the interlaboratory harmonization of practices in this area. METHODS: We have collected and analyzed the results of stability studies on 19 different cell-based experimental ATMPs, produced by five authorized cell factories forming the Lombardy "Plagencell network" for use in 36 approved phase I/II clinical trials; most were cryopreserved and stored in liquid nitrogen vapors for 1 to 13 years. RESULTS: The cell attributes collected in stability studies included cell viability, immunophenotype and potency assays, in particular immunosuppression, cytotoxicity, cytokine release and proliferation/differentiation capacity. Microbiological attributes including sterility, endotoxin levels and mycoplasma contamination were also analyzed. All drug products (DPs), cryopreserved in various excipients containing 10% DMSO and in different primary containers, were very stable long term at <-150°C and did not show any tendency for diminished viability or efficacy for up to 13.5 years. CONCLUSIONS: Our data indicate that new guidelines for stability studies, specific for ATMPs and based on risk analyses, should be drafted to harmonize practices, significantly reduce the costs of stability studies without diminishing safety. Some specific suggestions are presented in the discussion.


Assuntos
Criopreservação , Diferenciação Celular , Sobrevivência Celular , Imunofenotipagem
16.
Haematologica ; 107(6): 1293-1310, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34670357

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer arising from lymphoblasts of T-cell origin. While TALL accounts for only 15% of childhood and 25% of adult ALL, 30% of patients relapse with a poor outcome. Targeted therapy of resistant and high-risk pediatric T-ALL is therefore urgently needed, together with precision medicine tools allowing the testing of efficacy in patient samples. Furthermore, leukemic cell heterogeneity requires drug response assessment at the single-cell level. Here we used single-cell mass cytometry to study signal transduction pathways such as JAK-STAT, PI3K-AKT-mTOR and MEK-ERK in 16 diagnostic and five relapsed T-ALL primary samples, and investigated the in vitro response of cells to Interleukin-7 (IL-7) and the inhibitor BEZ-235. T-ALL cells showed upregulated activity of the PI3K-AKT-mTOR and MEK-ERK pathways and increased expression of proliferation and translation markers. We found that perturbation induced by the ex vivo administration of either IL-7 or BEZ-235 reveals a high degree of exclusivity with respect to the phospho-protein responsiveness to these agents. Notably, these response signatures were maintained from diagnosis to relapse in individual patients. In conclusion, we demonstrated the power of mass cytometry single-cell profiling of signal transduction pathways in T-ALL. Taking advantage of this advanced approach, we were able to identify distinct clusters with different responsiveness to IL-7 and BEZ-235 that can persist at relapse. Collectively our observations can contribute to a better understanding of the complex signaling network governing T-ALL behavior and its correlation with influence on the response to therapy.


Assuntos
Interleucina-7 , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Criança , Humanos , Interleucina-7/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Recidiva , Linfócitos T/metabolismo , Serina-Treonina Quinases TOR/metabolismo
17.
Br J Haematol ; 197(1): 76-81, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34881427

RESUMO

The standardized EuroFlow protocol, including CD19 as primary B-cell marker, enables highly sensitive and reliable minimal residual disease (MRD) assessment in B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) patients treated with chemotherapy. We developed and validated an alternative gating strategy allowing reliable MRD analysis in BCP-ALL patients treated with CD19-targeting therapies. Concordant data were obtained in 92% of targeted therapy patients who remained CD19-positive, whereas this was 81% in patients that became (partially) CD19-negative. Nevertheless, in both groups median MRD values showed excellent correlation with the original MRD data, indicating that, despite higher interlaboratory variation, the overall MRD analysis was correct.


Assuntos
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Adaptadoras de Transdução de Sinal , Antígenos CD19/uso terapêutico , Citometria de Fluxo/métodos , Humanos , Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico
18.
Cancers (Basel) ; 13(23)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34885257

RESUMO

Monitoring of minimal residual disease (MRD) by flow cytometry (FCM) is a powerful prognostic tool for predicting outcomes in acute lymphoblastic leukemia (ALL). To apply FCM-MRD in large, collaborative trials, dedicated laboratory staff must be educated to concordantly high levels of expertise and their performance quality should be continuously monitored. We sought to install a unique and comprehensive training and quality control (QC) program involving a large number of reference laboratories within the international Berlin-Frankfurt-Münster (I-BFM) consortium, in order to complement the standardization of the methodology with an educational component and persistent quality control measures. Our QC and quality assurance (QA) program is based on four major cornerstones: (i) a twinning maturation program, (ii) obligatory participation in external QA programs (spiked sample send around, United Kingdom National External Quality Assessment Service (UK NEQAS)), (iii) regular participation in list-mode-data (LMD) file ring trials (FCM data file send arounds), and (iv) surveys of independent data derived from trial results. We demonstrate that the training of laboratories using experienced twinning partners, along with continuous educational feedback significantly improves the performance of laboratories in detecting and quantifying MRD in pediatric ALL patients. Overall, our extensive education and quality control program improved inter-laboratory concordance rates of FCM-MRD assessments and ultimately led to a very high conformity of risk estimates in independent patient cohorts.

19.
J Immunother Cancer ; 9(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33597219

RESUMO

BACKGROUND: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease with a poor cure rate for relapsed/resistant patients. Due to the lack of T-cell restricted targetable antigens, effective immune-therapeutics are not presently available and the treatment of chemo-refractory T-ALL is still an unmet clinical need. To develop novel immune-therapy for T-ALL, we generated an afucosylated monoclonal antibody (mAb) (ahuUMG1) and two different bispecific T-cell engagers (BTCEs) against UMG1, a unique CD43-epitope highly and selectively expressed by T-ALL cells from pediatric and adult patients. METHODS: UMG1 expression was assessed by immunohistochemistry (IHC) on a wide panel of normal tissue microarrays (TMAs), and by flow cytometry on healthy peripheral blood/bone marrow-derived cells, on 10 different T-ALL cell lines, and on 110 T-ALL primary patient-derived cells. CD43-UMG1 binding site was defined through a peptide microarray scanning. ahuUMG1 was generated by Genetic Glyco-Engineering technology from a novel humanized mAb directed against UMG1 (huUMG1). BTCEs were generated as IgG1-(scFv)2 constructs with bivalent (2+2) or monovalent (2+1) CD3ε arms. Antibody dependent cellular cytotoxicity (ADCC), antibody dependent cellular phagocytosis (ADCP) and redirected T-cell cytotoxicity assays were analysed by flow cytometry. In vivo antitumor activity of ahUMG1 and UMG1-BTCEs was investigated in NSG mice against subcutaneous and orthotopic xenografts of human T-ALL. RESULTS: Among 110 T-ALL patient-derived samples, 53 (48.1%) stained positive (24% of TI/TII, 82% of TIII and 42.8% of TIV). Importantly, no expression of UMG1-epitope was found in normal tissues/cells, excluding cortical thymocytes and a minority (<5%) of peripheral blood T lymphocytes. ahUMG1 induced strong ADCC and ADCP on T-ALL cells in vitro, which translated in antitumor activity in vivo and significantly extended survival of treated mice. Both UMG1-BTCEs demonstrated highly effective killing activity against T-ALL cells in vitro. We demonstrated that this effect was specifically exerted by engaged activated T cells. Moreover, UMG1-BTCEs effectively antagonized tumor growth at concentrations >2 log lower as compared with ahuUMG1, with significant mice survival advantage in different T-ALL models in vivo. CONCLUSION: Altogether our findings, including the safe UMG1-epitope expression profile, provide a framework for the clinical development of these innovative immune-therapeutics for this still orphan disease.


Assuntos
Anticorpos Biespecíficos/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos Imunológicos/farmacologia , Leucossialina/agonistas , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Linfócitos T/efeitos dos fármacos , Animais , Especificidade de Anticorpos , Proliferação de Células/efeitos dos fármacos , Citotoxicidade Imunológica/efeitos dos fármacos , Epitopos , Feminino , Humanos , Células Jurkat , Leucossialina/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Camundongos Endogâmicos NOD , Camundongos SCID , Fagocitose/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Blood ; 137(4): 493-499, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-32905580

RESUMO

Agammaglobulinemia is the most profound primary antibody deficiency that can occur due to an early termination of B-cell development. We here investigated 3 novel patients, including the first known adult, from unrelated families with agammaglobulinemia, recurrent infections, and hypertrophic cardiomyopathy (HCM). Two of them also presented with intermittent or severe chronic neutropenia. We identified homozygous or compound-heterozygous variants in the gene for folliculin interacting protein 1 (FNIP1), leading to loss of the FNIP1 protein. B-cell metabolism, including mitochondrial numbers and activity and phosphatidylinositol 3-kinase/AKT pathway, was impaired. These defects recapitulated the Fnip1-/- animal model. Moreover, we identified either uniparental disomy or copy-number variants (CNVs) in 2 patients, expanding the variant spectrum of this novel inborn error of immunity. The results indicate that FNIP1 deficiency can be caused by complex genetic mechanisms and support the clinical utility of exome sequencing and CNV analysis in patients with broad phenotypes, including agammaglobulinemia and HCM. FNIP1 deficiency is a novel inborn error of immunity characterized by early and severe B-cell development defect, agammaglobulinemia, variable neutropenia, and HCM. Our findings elucidate a functional and relevant role of FNIP1 in B-cell development and metabolism and potentially neutrophil activity.


Assuntos
Agamaglobulinemia/genética , Linfócitos B/patologia , Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Síndromes de Imunodeficiência/genética , Linfopenia/genética , Adulto , Animais , Linfócitos B/metabolismo , Criança , Pré-Escolar , Cromossomos Humanos Par 5/genética , Códon sem Sentido , Consanguinidade , Doença de Crohn/genética , Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/genética , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Cardiopatias Congênitas/genética , Humanos , Infecções/etiologia , Mutação com Perda de Função , Masculino , Camundongos , Neutropenia/genética , Linhagem , Dissomia Uniparental , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...