Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Macro Lett ; 11(11): 1285-1290, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36282218

RESUMO

We correlate the strength of interfacial interactions with the adhesive force necessary to separate a polymer from a surface. It is intuitive that interactions would influence adhesion and friction; however, challenges in the direct measurement of the interaction strength at interfaces have obscured the connection between these interactions and such phenomena. We overcome this by using interface-sensitive sum frequency generation spectroscopy to determine the strength of interfacial interactions between polymers and sapphire through a shift in vibrational frequency and compare this with mechanical adhesion tests. Our results indicate that spectroscopic shifts can be used to directly estimate adhesion, especially for polar materials. This work provides a framework to connect molecular interactions to interfacial properties, enabling the design and rapid screening of molecular architectures.


Assuntos
Adesivos , Polímeros , Humanos , Propriedades de Superfície , Polímeros/química , Análise Espectral/métodos , Vibração , Aderências Teciduais
2.
Nanoscale ; 13(17): 8098-8106, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33956918

RESUMO

A single layer of graphene when transferred to a solid substrate has the ability to screen or transmit interactions from the underlying substrate, which has direct consequences in applications of this 2D material to flexible electronics and sensors. Previous reports using a multitude of techniques present contradictory views on graphene's ability to screen or transmit van der Waals (vdW) and polar interactions. In the present study, we use interface-sensitive spectroscopy to demonstrate that a single layer graphene is opaque to hydrogen bonding interactions (a subset of acid-base interactions), answering a question that has remained unresolved for a decade. Similar frequency shifts of sapphire hydroxyl (OH) peak for graphene-coated sapphire in contact with air and polydimethylsiloxane (PDMS) demonstrate the insensitivity of sapphire OH to PDMS. The screening ability of graphene is also evident in the smaller magnitude of this frequency shift for graphene-coated sapphire in comparison to that for bare sapphire. The screening of acid-base interactions by a single layer graphene results in the significant reduction of adhesion hysteresis for PDMS lens on graphene-coated substrates (sapphire and silicon wafer, SiO2/Si) than bare substrates. Our results have implications in the use of PDMS stamps to transfer graphene to other substrates eliminating the need for a wet-transfer process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA