Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38798409

RESUMO

We examined the effect of alcohol consumption and smoking on the abundance of drug-metabolizing enzymes and transporters (DMET) in human liver microsomes (HLM) isolated from liver tissues of 94 donors. Global proteomics analysis was performed and DMET protein levels were analyzed in relation to alcohol consumption levels, smoking history, and sex using non-parametric tests (p-value ≤ 0.05; cutoff of 1.25-fold change, FC). The examination of the alcohol-induced changes was further enforced by correlational analysis, where we used arbitrary alcohol consumption grade (ACG) scaling from 0 to 4 to establish a set of protein markers. We elaborated a provisional index of alcohol exposure (PIAE) based on a combination of relative abundances of four proteins (ER chaperone HSPA5, protein disulfide isomerases PDIA3 and P4HB, and cocaine esterase CES2) best correlating with ACG. The PIAE index was then used to find its correlations with the abundances of DMET proteins. Our results demonstrate considerable alcohol-induced changes in composition of the pool of cytochrome P450 enzymes in HLM. We observed significantly increased abundances of CYP2E1, CYP2B6, CYP2J2, and NADPH-cytochrome P450 reductase. In contrast, CYP1A2, CYP2C8, CYP2C9, CYP4A11, and cytochrome b5 protein levels were downregulated. Significant alteration in abundances of UDP-glucuronosyltransferase (UGT) were also detected, comprising of elevated UGT1A6, UGT1A9, and UGT2A1, and reduced UGT1A3, UGT1A4, UGT2B7, UGT2B10, and UGT2B15 levels. Important alcohol-induced changes were also observed in the expression of non-CYP and non-UGT DMET. Additionally, tobacco smoke was associated with elevated CYP1A2, UGT1A6, UGT2A1, and UGT2B4 and decreased FMO3, FMO4, and FMO5 levels.

2.
Chem Res Toxicol ; 37(5): 711-722, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38602333

RESUMO

A growing body of literature has linked early-life exposures to polycyclic aromatic hydrocarbons (PAH) with adverse neurodevelopmental effects. Once in the body, metabolism serves as a powerful mediator of PAH toxicity by bioactivating and detoxifying PAH metabolites. Since enzyme expression and activity vary considerably throughout human development, we evaluated infant metabolism of PAHs as a potential contributing factor to PAH susceptibility. We measured and compared rates of phenanthrene and retene (two primary PAH constituents of woodsmoke) metabolism in human hepatic microsomes from individuals ≤21 months of age to a pooled sample (n = 200) consisting primarily of adults. We used activity-based protein profiling (ABPP) to characterize cytochrome P450 enzymes (CYPs) in the same hepatic microsome samples. Once incubated in microsomes, phenanthrene demonstrated rapid depletion. Best-fit models for phenanthrene metabolism demonstrated either 1 or 2 phases, depending on the sample, indicating that multiple enzymes could metabolize phenanthrene. We observed no statistically significant differences in phenanthrene metabolism as a function of age, although samples from the youngest individuals had the slowest phenanthrene metabolism rates. We observed slower rates of retene metabolism compared with phenanthrene also in multiple phases. Rates of retene metabolism increased in an age-dependent manner until adult (pooled) metabolism rates were achieved at ∼12 months. ABPP identified 28 unique CYPs among all samples, and we observed lower amounts of active CYPs in individuals ≤21 months of age compared to the pooled sample. Phenanthrene metabolism correlated to CYPs 1A1, 1A2, 2C8, 4A22, 3A4, and 3A43 and retene metabolism correlated to CYPs 1A1, 1A2, and 2C8 measured by ABPP and vendor-supplied substrate marker activities. These results will aid efforts to determine human health risk and susceptibility to PAHs exposure during early life.


Assuntos
Sistema Enzimático do Citocromo P-450 , Microssomos Hepáticos , Fenantrenos , Fenantrenos/metabolismo , Humanos , Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos/metabolismo , Lactente , Adulto , Feminino , Masculino , Hidrocarbonetos Policíclicos Aromáticos/metabolismo
3.
Biology (Basel) ; 12(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37626940

RESUMO

In a search for a reliable, inexpensive, and versatile technique for high-throughput kinetic assays of drug metabolism, we elected to rehire an old-school approach based on the determination of formaldehyde (FA) formed in cytochrome P450-dependent demethylation reactions. After evaluating several fluorometric techniques for FA detection, we chose the method based on the Hantzsch reaction with acetoacetanilide as the most sensitive, robust, and adaptable to high-throughput implementation. Here we provide a detailed protocol for using our new technique for automatized assays of cytochrome P450-dependent drug demethylations and discuss its applicability for high-throughput scanning of drug metabolism pathways in the human liver. To probe our method further, we applied it to re-evaluating the pathways of metabolism of ketamine, a dissociative anesthetic and potent antidepressant increasingly used in the treatment of alcohol withdrawal syndrome. Probing the kinetic parameters of ketamine demethylation by ten major cytochrome P450 (CYP) enzymes, we demonstrate that in addition to CYP2B6 and CYP3A enzymes, which were initially recognized as the primary metabolizers of ketamine, an important role is also played by CYP2C19 and CYP2D6. At the same time, the involvement of CYP2C9 suggested in the previous reports was deemed insignificant.

4.
Artigo em Inglês | MEDLINE | ID: mdl-35886113

RESUMO

Humans are routinely exposed to complex mixtures such as polycyclic aromatic hydrocarbons (PAHs) rather than to single compounds, as are often assessed for hazards. Cytochrome P450 enzymes (CYPs) metabolize PAHs, and multiple PAHs found in mixtures can compete as substrates for individual CYPs (e.g., CYP1A1, CYP1B1, etc.). The objective of this study was to assess competitive inhibition of metabolism of PAH mixtures in humans and evaluate a key assumption of the Relative Potency Factor approach that common human exposures will not cause interactions among mixture components. To test this objective, we co-incubated binary mixtures of benzo[a]pyrene (BaP) and dibenzo[def,p]chrysene (DBC) in human hepatic microsomes and measured rates of enzymatic BaP and DBC disappearance. We observed competitive inhibition of BaP and DBC metabolism and measured inhibition coefficients (Ki), observing that BaP inhibited DBC metabolism more potently than DBC inhibited BaP metabolism (0.061 vs. 0.44 µM Ki, respectively). We developed a physiologically based pharmacokinetic (PBPK) interaction model by integrating PBPK models of DBC and BaP and incorporating measured metabolism inhibition coefficients. The PBPK model predicts significant increases in BaP and DBC concentrations in blood AUCs following high oral doses of PAHs (≥100 mg), five orders of magnitude higher than typical human exposures. We also measured inhibition coefficients of Supermix-10, a mixture of the most abundant PAHs measured at the Portland Harbor Superfund Site, on BaP and DBC metabolism. We observed similar potencies of inhibition coefficients of Supermix-10 compared to BaP and DBC. Overall, results of this study demonstrate that these PAHs compete for the same enzymes and, at high doses, inhibit metabolism and alter internal dosimetry of exposed PAHs. This approach predicts that BaP and DBC exposures required to observe metabolic interaction are much higher than typical human exposures, consistent with assumptions used when applying the Relative Potency Factor approach for PAH mixture risk assessment.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Benzo(a)pireno/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo
5.
Chem Res Toxicol ; 35(4): 585-596, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35347982

RESUMO

The gut microbiome is a key contributor to xenobiotic metabolism. Polycyclic aromatic hydrocarbons (PAHs) are an abundant class of environmental contaminants that have varying levels of carcinogenicity depending on their individual structures. Little is known about how the gut microbiome affects the rates of PAH metabolism. This study sought to determine the role that the gut microbiome has in determining the various aspects of metabolism in the liver, before and after exposure to two structurally different PAHs, benzo[a]pyrene and 1-nitropyrene. Following exposures, the metabolic rates of PAH metabolism were measured, and activity-based protein profiling was performed. We observed differences in PAH metabolism rates between germ-free and conventional mice under both unexposed and exposed conditions. Our activity-based protein profiling (ABPP) analysis showed that, under unexposed conditions, there were only minor differences in total P450 activity in germ-free mice relative to conventional mice. However, we observed distinct activity profiles in response to corn oil vehicle and PAH treatment, primarily in the case of 1-NP treatment. This study revealed that the repertoire of active P450s in the liver is impacted by the presence of the gut microbiome, which modifies PAH metabolism in a substrate-specific fashion.


Assuntos
Microbioma Gastrointestinal , Hidrocarbonetos Policíclicos Aromáticos , Animais , Benzo(a)pireno , Camundongos , Pirenos , Xenobióticos
6.
PLoS One ; 15(6): e0225044, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32603335

RESUMO

Cellular stress response mechanisms normally function to enhance survival and allow for cells to return to homeostasis following an adverse event. Cancer cells often co-opt these same mechanisms as a means to evade apoptosis and mitigate a state of constant cellular stress. Activating transcription factor 5 (ATF5) is upregulated under diverse stress conditions and is overexpressed in a variety of cancers. It was demonstrated ATF5 is a survival factor in transformed, but not normal cells. However, the regulation of ATF5 is not fully understood. The purpose of the present study was to investigate miRNA regulation at the 3' untranslated region (UTR) of ATF5, with the goal of demonstrating a reversal of the upregulation of ATF5 induced under diverse cellular stress in cancer cells. A multifactorial approach using in silico analysis was employed to identify miRNAs 433-3p, 520b-3p, and 129-5p as potential regulators of ATF5, based on their predicted binding sites over the span of the ATF5 3' UTR. Luciferase reporter assay data validated all three miRNA candidates by demonstrating direct binding to the target ATF5 3'. However, functional studies revealed miR-520b-3p as the sole candidate able to reverse the upregulation of ATF5 protein under diverse cellular stress. Additionally, miR-520b-3p levels were inversely related to ATF5 mRNA under endoplasmic reticulum stress and amino acid deprivation. This is the first evidence that regulation at the 3' UTR is involved in modulating ATF5 levels under cellular stress and suggests an important role for miRNA-520b-3p in the regulation of ATF5.


Assuntos
Fatores Ativadores da Transcrição/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Regiões 3' não Traduzidas/genética , Sequência de Bases , Células HeLa , Humanos , Células MCF-7 , Estresse Fisiológico/genética
7.
Cancer Immunol Immunother ; 65(9): 1123-34, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27481107

RESUMO

ALT-803, a novel IL-15/IL-15 receptor alpha complex, and the tyrosine kinase inhibitor, sunitinib, were examined for their single and combined effects on the growth of subcutaneous B16BL6 melanoma and on lymph node and lung metastasis. The study was conducted in immunocompetent C57BL/6 mice drinking water (Water mice) and in mice that chronically consumed alcohol (Alcohol mice), which are deficient in CD8(+) T cells. Sunitinib inhibited melanoma growth and was more effective in Alcohol mice. ALT-803 did not alter tumor growth or survival in Water or Alcohol mice. Combined ALT-803 and sunitinib inhibited melanoma growth and increased survival, and these effects were greater than sunitinib alone in Water mice. ALT-803 and alcohol independently suppressed lymph node and lung metastasis, whereas sunitinib alone or in combination with ALT-803 increased lymph node and lung metastasis in Water and Alcohol mice. Initially, ALT-803 increased IFN-γ-producing CD8(+)CD44(hi) memory T cells and CD8(+)CD44(hi)CD62L(lo) effector memory T cells and sunitinib decreased immunosuppressive MDSC and T regulatory cells (Treg). However, the impact of these treatments diminished with time. Subcutaneous tumors from Water mice showed increased numbers of CD8(+) T cells, CD8(+)CD44(hi) T cells, NK cells, and MDSC cells and decreased Treg cells after ALT-803 treatment.


Assuntos
Alcoolismo/complicações , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Quimioterapia Combinada/métodos , Melanoma Experimental/complicações , Melanoma Experimental/tratamento farmacológico , Alcoolismo/imunologia , Animais , Feminino , Indóis/administração & dosagem , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas/administração & dosagem , Pirróis/administração & dosagem , Proteínas Recombinantes de Fusão , Sunitinibe , Linfócitos T Reguladores/imunologia
8.
J Biomed Mater Res B Appl Biomater ; 91(1): 135-42, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19399855

RESUMO

Feeding tubes are used to supply nutritional formula to immobilized patients. The most common cause for failure of enteral feeding tubes is their occlusion. The purpose of this study was to examine whether occlusion of enteral feeding tubes could be minimized using an additive. An open, intermittent enteral feeding system was simulated in the laboratory and data were collected over a period ranging from 2 to 6 days. Feeding formula was cycled through a feeding tube in either the presence or absence of simulated gastric acid in an effort to generate a reproducible occlusion. Pressures in the tube were measured frequently throughout these cycles. We observed pressure spikes with each cycle, but never a complete occlusion. Pressure spikes formed only when simulated gastric acid was mixed with the feeding solution. Large amounts of feeding formula adsorbed onto polyurethane (PU) surfaces in the presence of gastric acid. Also, this subtle change in surface chemistry significantly affected the number of pressure spikes observed. The maximum pressure required to maintain flow in the tube was reduced by about half from 2.0 psi to 0.8 psi when polyvinyl alcohol (PVA) was added. The addition of PVA to PU also reduced the contact angle from 83 degrees (untreated) to approximately 64 degrees in the presence of PVA. Furthermore, when formula was added to PU in the presence of PVA the thickness of the layer that remained on the surface was almost 10 times greater in controls than on PVA-treated surfaces. These results suggest that a treatment that increases the hydrophilicity of the feeding tube may help minimize clogging.


Assuntos
Nutrição Enteral/instrumentação , Falha de Equipamento , Intubação Gastrointestinal/instrumentação , Teste de Materiais , Poliuretanos/química , Adsorção , Carboidratos/química , Caseínas/química , Ácido Gástrico/química , Humanos , Lipídeos/química , Nutrição Parenteral/instrumentação , Proteínas de Vegetais Comestíveis/química , Álcool de Polivinil/química , Desnaturação Proteica , Proteínas/química , Reologia , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...