Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Leukemia ; 37(10): 2058-2065, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563306

RESUMO

Knowledge on the pathogenesis of FL is mainly based on data derived from advanced/systemic stages of FL (sFL) and only small cohorts of localized FL (lFL) have been characterized intensively so far. Comprehensive analysis with profiling of somatic copy number alterations (SCNA) and whole exome sequencing (WES) was performed in 147 lFL and 122 sFL. Putative targets were analyzed for gene and protein expression. Overall, lFL and sFL, as well as BCL2 translocation-positive (BCL2+) and -negative (BCL2-) FL showed overlapping features in SCNA and mutational profiles. Significant differences between lFL and sFL, however, were detected for SCNA frequencies, e.g., in 18q-gains (14% lFL vs. 36% sFL; p = 0.0003). Although rare in lFL, gains in 18q21 were associated with inferior progression-free survival (PFS). The mutational landscape of lFL and sFL included typical genetic lesions. However, ARID1A mutations were significantly more often detected in sFL (29%) compared to lFL (6%, p = 0.0001). In BCL2 + FL mutations in KMT2D, BCL2, ABL2, IGLL5 and ARID1A were enriched, while STAT6 mutations more frequently occurred in BCL2- FL. Although the landscape of lFL and sFL showed overlapping features, molecular profiling revealed novel insights and identified gains in 18q21 as prognostic marker in lFL.


Assuntos
Linfoma Folicular , Humanos , Linfoma Folicular/genética , Linfoma Folicular/metabolismo , Translocação Genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Mutação , Hibridização in Situ Fluorescente
2.
Nat Commun ; 13(1): 5586, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36151076

RESUMO

Antibodies against the spike protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can drive adaptive evolution in immunocompromised patients with chronic infection. Here we longitudinally analyze SARS-CoV-2 sequences in a B cell-depleted, lymphoma patient with chronic, ultimately fatal infection, and identify three mutations in the spike protein that dampen convalescent plasma-mediated neutralization of SARS-CoV-2. Additionally, four mutations emerge in non-spike regions encoding three CD8 T cell epitopes, including one nucleoprotein epitope affected by two mutations. Recognition of each mutant peptide by CD8 T cells from convalescent donors is reduced compared to its ancestral peptide, with additive effects resulting from double mutations. Querying public SARS-CoV-2 sequences shows that these mutations have independently emerged as homoplasies in circulating lineages. Our data thus suggest that potential impacts of CD8 T cells on SARS-CoV-2 mutations, at least in those with humoral immunodeficiency, warrant further investigation to inform on vaccine design.


Assuntos
COVID-19 , Linfoma , Vacinas , Linfócitos T CD8-Positivos , COVID-19/terapia , Epitopos de Linfócito T/genética , Humanos , Imunização Passiva , Mutação , Nucleoproteínas/genética , Peptídeos/genética , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Soroterapia para COVID-19
3.
Hemasphere ; 5(7): e603, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34235400

RESUMO

The clinical and immunological impact of B-cell depletion in the context of coronavirus disease 2019 (COVID-19) is unclear. We conducted a prospectively planned analysis of COVID-19 in patients who received B-cell depleting anti-CD20 antibodies and chemotherapy for B-cell lymphomas. The control cohort consisted of age- and sex-matched patients without lymphoma who were hospitalized because of COVID-19. We performed detailed clinical analyses, in-depth cellular and molecular immune profiling, and comprehensive virological studies in 12 patients with available biospecimens. B-cell depleted lymphoma patients had more severe and protracted clinical course (median hospitalization 88 versus 17 d). All patients actively receiving immunochemotherapy (n = 5) required ICU support including long-term mechanical ventilation. Neutrophil recovery following granulocyte colony stimulating factor stimulation coincided with hyperinflammation and clinical deterioration in 4 of the 5 patients. Immune cell profiling and gene expression analysis of peripheral blood mononuclear cells revealed early activation of monocytes/macrophages, neutrophils, and the complement system in B-cell depleted lymphoma patients, with subsequent exacerbation of the inflammatory response and dysfunctional interferon signaling at the time of clinical deterioration of COVID-19. Longitudinal immune cell profiling and functional in vitro assays showed SARS-CoV-2-specific CD8+ and CD4+ T-effector cell responses. Finally, we observed long-term detection of SARS-CoV-2 in respiratory specimens (median 84 versus 12 d) and an inability to mount lasting SARS-CoV-2 antibody responses in B-cell depleted lymphoma patients. In summary, we identified clinically relevant particularities of COVID-19 in lymphoma patients receiving B-cell depleting immunochemotherapies.

4.
Blood Adv ; 4(18): 4451-4462, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32941649

RESUMO

High-dose therapy and autologous stem cell transplantation (HDT/ASCT) is an effective salvage treatment for eligible patients with follicular lymphoma (FL) and early progression of disease (POD). Since the introduction of rituximab, HDT/ASCT is no longer recommended in first remission. We here explored whether consolidative HDT/ASCT improved survival in defined subgroups of previously untreated patients. We report survival analyses of 431 patients who received frontline rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) for advanced FL, and were randomized to receive consolidative HDT/ASCT. We performed targeted genotyping of 157 diagnostic biopsies, and calculated genotype-based risk scores. HDT/ASCT improved failure-free survival (FFS; hazard ratio [HR], 0.8, P = .07; as-treated: HR, 0.7, P = .04), but not overall survival (OS; HR, 1.3, P = .27; as-treated: HR, 1.4, P = .13). High-risk cohorts identified by FL International Prognostic Index (FLIPI), and the clinicogenetic risk models m7-FLIPI and POD within 24 months-prognostic index (POD24-PI) comprised 27%, 18%, and 22% of patients. HDT/ASCT did not significantly prolong FFS in high-risk patients as defined by FLIPI (HR, 0.9; P = .56), m7-FLIPI (HR, 0.9; P = .91), and POD24-PI (HR, 0.8; P = .60). Similarly, OS was not significantly improved. Finally, we used a machine-learning approach to predict benefit from HDT/ASCT by genotypes. Patients predicted to benefit from HDT/ASCT had longer FFS with HDT/ASCT (HR, 0.4; P = .03), but OS did not reach statistical significance. Thus, consolidative HDT/ASCT after frontline R-CHOP did not improve OS in unselected FL patients and subgroups selected by genotype-based risk models.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Linfoma Folicular , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ciclofosfamida/uso terapêutico , Doxorrubicina/uso terapêutico , Humanos , Linfoma Folicular/tratamento farmacológico , Prednisona/uso terapêutico , Fatores de Risco , Rituximab/uso terapêutico , Transplante Autólogo , Vincristina/uso terapêutico
5.
Cell Rep ; 31(5): 107522, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32330423

RESUMO

Tumor cells orchestrate their microenvironment. Here, we provide biochemical, structural, functional, and clinical evidence that Cathepsin S (CTSS) alterations induce a tumor-promoting immune microenvironment in follicular lymphoma (FL). We found CTSS mutations at Y132 in 6% of FL (19/305). Another 13% (37/286) had CTSS amplification, which was associated with higher CTSS expression. CTSS Y132 mutations lead to accelerated autocatalytic conversion from an enzymatically inactive profrom to active CTSS and increased substrate cleavage, including CD74, which regulates major histocompatibility complex class II (MHC class II)-restricted antigen presentation. Lymphoma cells with hyperactive CTSS more efficiently activated antigen-specific CD4+ T cells in vitro. Tumors with hyperactive CTSS showed increased CD4+ T cell infiltration and proinflammatory cytokine perturbation in a mouse model and in human FLs. In mice, this CTSS-induced immune microenvironment promoted tumor growth. Clinically, patients with CTSS-hyperactive FL had better treatment outcomes with standard immunochemotherapies, indicating that these immunosuppressive regimens target both the lymphoma cells and the tumor-promoting immune microenvironment.


Assuntos
Apresentação de Antígeno/imunologia , Catepsinas/metabolismo , Linfoma Folicular/metabolismo , Microambiente Tumoral/imunologia , Animais , Antígenos de Diferenciação de Linfócitos B/metabolismo , Citocinas/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Terapia de Imunossupressão , Linfoma Folicular/patologia , Camundongos
6.
Nat Commun ; 9(1): 1523, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29670076

RESUMO

Leukocyte-released antimicrobial peptides contribute to pathogen elimination and activation of the immune system. Their role in thrombosis is incompletely understood. Here we show that the cathelicidin LL-37 is abundant in thrombi from patients with acute myocardial infarction. Its mouse homologue, CRAMP, is present in mouse arterial thrombi following vascular injury, and derives mainly from circulating neutrophils. Absence of hematopoietic CRAMP in bone marrow chimeric mice reduces platelet recruitment and thrombus formation. Both LL-37 and CRAMP induce platelet activation in vitro by involving glycoprotein VI receptor with downstream signaling through protein tyrosine kinases Src/Syk and phospholipase C. In addition to acute thrombosis, LL-37/CRAMP-dependent platelet activation fosters platelet-neutrophil interactions in other inflammatory conditions by modulating the recruitment and extravasation of neutrophils into tissues. Absence of CRAMP abrogates acid-induced lung injury, a mouse pneumonia model that is dependent on platelet-neutrophil interactions. We suggest that LL-37/CRAMP represents an important mediator of platelet activation and thrombo-inflammation.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Artérias/patologia , Plaquetas/metabolismo , Inflamação/metabolismo , Neutrófilos/metabolismo , Trombose/metabolismo , Animais , Plaquetas/citologia , Feminino , Humanos , Microscopia Intravital , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio/química , Permeabilidade , Ativação Plaquetária , Transdução de Sinais , Catelicidinas
7.
Sci Rep ; 7(1): 1112, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28442771

RESUMO

Double-stranded DNA (dsDNA) constitutes a potent activator of innate immunity, given its ability to bind intracellular pattern recognition receptors during viral infections or sterile tissue damage. While effects of dsDNA in immune cells have been extensively studied, dsDNA signalling and its pathophysiological implications in non-immune cells, such as the vascular endothelium, remain poorly understood. The aim of this study was to characterize prothrombotic effects of dsDNA in vascular endothelial cells. Transfection of cultured human endothelial cells with the synthetic dsDNA poly(dA:dT) induced upregulation of the prothrombotic molecules tissue factor and PAI-1, resulting in accelerated blood clotting in vitro, which was partly dependent on RIG-I signalling. Prothrombotic effects were also observed upon transfection of endothelial cells with hepatitis B virus DNA-containing immunoprecipitates as well human genomic DNA. In addition, dsDNA led to surface expression of von Willebrand factor resulting in increased platelet-endothelium-interactions under flow. Eventually, intrascrotal injection of dsDNA resulted in accelerated thrombus formation upon light/dye-induced endothelial injury in mouse cremaster arterioles and venules in vivo. In conclusion, we show that viral or endogenous dsDNA induces a prothrombotic phenotype in the vascular endothelium. These findings represent a novel link between pathogen- and danger-associated patterns within innate immunity and thrombosis.


Assuntos
DNA/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Inibidor 1 de Ativador de Plasminogênio/biossíntese , Tromboplastina/biossíntese , Animais , Coagulação Sanguínea , Células Cultivadas , Modelos Animais de Doenças , Humanos , Camundongos , Trombose/induzido quimicamente , Trombose/patologia , Fator de von Willebrand/biossíntese
8.
Cell Mol Immunol ; 14(12): 986-996, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27086952

RESUMO

Hepatitis C virus (HCV) infection is a major problem worldwide. HCV is not limited to liver disease but is frequently complicated by immune-mediated extrahepatic manifestations such as glomerulonephritis or vasculitis. A fatal complication of HCV-associated vascular disease is thrombosis. Polyriboinosinic:polyribocytidylic acid (poly (I:C)), a synthetic analog of viral RNA, induces a Toll-like receptor 3 (TLR3)-dependent arteriolar thrombosis without significant thrombus formation in venules in vivo. These procoagulant effects are caused by increased endothelial synthesis of tissue factor and PAI-1 without platelet activation. In addition to human umbilical endothelial cells (HUVEC), human mesangial cells (HMC) produce procoagulatory factors, cytokines and adhesion molecules after stimulation with poly (I:C) or HCV-containing cryoprecipitates from a patient with a HCV infection as well. Activated protein C (APC) is able to prevent the induction of procoagulatory factors in HUVEC and HMC in vitro and blocks the effects of poly (I:C) and HCV-RNA on the expression of cytokines and adhesion molecules in HMC but not in HUVEC. In vivo, protein C inhibits poly (I:C)-induced arteriolar thrombosis. Thus, endothelial cells are de facto able to actively participate in immune-mediated vascular thrombosis caused by viral infections. Finally, we provide evidence for the ability of protein C to inhibit TLR3-mediated arteriolar thrombosis caused by HCV infection.


Assuntos
Artérias/patologia , Células Endoteliais/imunologia , Hepacivirus/imunologia , Hepatite C/tratamento farmacológico , Células Mesangiais/imunologia , Proteína C/uso terapêutico , Doenças Vasculares/tratamento farmacológico , Vênulas/patologia , Animais , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Poli I-C/administração & dosagem , Trombose , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo
9.
Thromb Res ; 148: 15-22, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27768934

RESUMO

INTRODUCTION: Platelets possess critical hemostatic functions in the system of thrombosis and hemostasis, which can be affected by a multitude of external factors. Previous research has shown that platelets have the capacity to synthesize proteins de novo and more recently a multicatalytic protein complex, the proteasome, has been discovered in platelets. Due to its vital function for cellular integrity, the proteasome has become a therapeutic target for anti-proliferative drug therapies in cancer. Clinically thrombocytopenia is a frequent side-effect, but the aggregatory function of platelets also appears to be affected. Little is known however about underlying regulatory mechanisms and functional aspects of proteasome inhibition on platelets. Our study aims to investigate the role of the proteasome in regulating collagen-induced platelet aggregation and its interaction with NFkB in this context. MATERIAL AND METHODS: Using fluorescence activity assays, platelet aggregometry and immunoblotting, we investigate regulatory interactions of the proteasome and Nuclear-factor-kappa-B (NFkB) in collagen-induced platelet aggregation. RESULTS: We show that collagen induces proteasome activation in platelets and collagen-induced platelet aggregation can be reduced with proteasome inhibition by the specific inhibitor epoxomicin. This effect does not depend on Rho-kinase/ROCK activation or thromboxane release, but rather depends on NFkB activation. Inhibition of the proteasome prevented cleavage of NFκB-inhibitor protein IκBα and decreased NFκB activity after collagen stimulation. Inhibition of the NFκB-pathway in return reduced collagen-induced platelet proteasome activity and cleavage of proteasome substrates. CONCLUSIONS: This work offers novel explanations how the proteasome influences collagen-dependent platelet aggregation by involving non-genomic functions of NFkB.


Assuntos
Plaquetas/metabolismo , Colágeno/metabolismo , NF-kappa B/metabolismo , Agregação Plaquetária , Complexo de Endopeptidases do Proteassoma/metabolismo , Plaquetas/citologia , Cálcio/metabolismo , Humanos , Transdução de Sinais
10.
J Autoimmun ; 65: 19-29, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26297208

RESUMO

In viral infection, morbidity and mortality often result from extrahepatic disease manifestations such as vasculitis. We hereby show that human microvascular endothelial cells express viral receptors of the innate immune system which are induced upon ligand engagement. Furthermore, stimulation of endothelial cells with the synthetic analog of viral DNA, poly (dA:dT), human DNA and hepatitis B virus-containing immunoprecipitates from a patient with polyarteritis nodosa induces an inflammatory response including the upregulation of adhesion molecules, which is mediated exclusively by TLR9 and involves an IRF3-dependent pathway. Thus, endothelial cells are able to actively participate in immune mediated vascular inflammation caused by viral infections. Furthermore, we provide evidence for the ability of LL37 to bind and internalize viral or endogenous DNA into non-immune cells. DNA nucleotides internalized by LL37 suppress the production of proinflammatory mediators suggesting a protective effect against direct responses to viral infection or circulating DNA-fragments of endogenous origin.


Assuntos
Catelicidinas/imunologia , DNA Viral/imunologia , Células Endoteliais/imunologia , Inflamação/imunologia , Microvasos/imunologia , Poli dA-dT/imunologia , Peptídeos Catiônicos Antimicrobianos , Catelicidinas/metabolismo , Células Cultivadas , Quimiocinas/imunologia , Quimiocinas/metabolismo , Armadilhas Extracelulares/metabolismo , Vírus da Hepatite B/imunologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Humanos , Inflamação/metabolismo , Inflamação/virologia , Fator Regulador 3 de Interferon/imunologia , Transdução de Sinais/imunologia , Receptor Toll-Like 9/imunologia
11.
PLoS One ; 10(3): e0121113, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25799543

RESUMO

INTRODUCTION: The tyrosine phosphatase SHP-1 negatively influences endothelial function, such as VEGF signaling and reactive oxygen species (ROS) formation, and has been shown to influence angiogenesis during tissue ischemia. In ischemic tissues, hypoxia induced angiogenesis is crucial for restoring oxygen supply. However, the exact mechanism how SHP-1 affects endothelial function during ischemia or hypoxia remains unclear. We performed in vitro endothelial cell culture experiments to characterize the role of SHP-1 during hypoxia. RESULTS: SHP-1 knock-down by specific antisense oligodesoxynucleotides (AS-Odn) increased cell growth as well as VEGF synthesis and secretion during 24 hours of hypoxia compared to control AS-Odn. This was prevented by HIF-1α inhibition (echinomycin and apigenin). SHP-1 knock-down as well as overexpression of a catalytically inactive SHP-1 (SHP-1 CS) further enhanced HIF-1α protein levels, whereas overexpression of a constitutively active SHP-1 (SHP-1 E74A) resulted in decreased HIF-1α levels during hypoxia, compared to wildtype SHP-1. Proteasome inhibition (MG132) returned HIF-1α levels to control or wildtype levels respectively in these cells. SHP-1 silencing did not alter HIF-1α mRNA levels. Finally, under hypoxic conditions SHP-1 knock-down enhanced intracellular endothelial reactive oxygen species (ROS) formation, as measured by oxidation of H2-DCF and DHE fluorescence. CONCLUSIONS: SHP-1 decreases half-life of HIF-1α under hypoxic conditions resulting in decreased cell growth due to diminished VEGF synthesis and secretion. The regulatory effect of SHP-1 on HIF-1α stability may be mediated by inhibition of endothelial ROS formation stabilizing HIF-1α protein. These findings highlight the importance of SHP-1 in hypoxic signaling and its potential as therapeutic target in ischemic diseases.


Assuntos
Células Endoteliais/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Hipóxia Celular , Proliferação de Células , Células Cultivadas , Células Endoteliais/enzimologia , Técnicas de Silenciamento de Genes , Humanos , Espécies Reativas de Oxigênio/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
PLoS One ; 9(11): e113351, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25419735

RESUMO

In hepatitis C virus (HCV) infection, morbidity and mortality often result from extrahepatic disease manifestations. We provide evidence for a role of receptors of the innate immune system in virally induced inflammation of the endothelium in vitro and in vivo. Corresponding to the in vitro finding of an HCV-dependent induction of proinflammatory mediators in endothelial cells, mice treated with poly (I:C) exhibit a significant reduction in leukocyte rolling velocity, an increase in leukocyte adhesion to the vessel wall and an increased extravasation of leukocytes. HCV directly promotes activation, adhesion and infiltration of inflammatory cells into the vessel wall by activation of endothelial viral receptors. Poly (I:C) induces the expression of TLR3 in vivo and hereby allows for amplification of all of the aforementioned responses upon viral infection. Proinflammatory effects of viral RNA are specifically mediated by TLR3 and significantly enhanced by tumor necrosis factor alpha (TNFα). HCV-RNA induces the endothelial expression of TNFα and TNFα receptor subtype 2 and we provide evidence that leucocyte adhesion and transmigration in response to activation of viral RNA receptors seem to depend on expression of functional TNFR2. Our results demonstrate that endothelial cells actively participate in immune mediated vascular inflammation caused by viral infections.


Assuntos
Citocinas/metabolismo , Células Endoteliais/virologia , Hepacivirus/fisiologia , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Animais , Western Blotting , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citocinas/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Células Endoteliais/metabolismo , Expressão Gênica/efeitos dos fármacos , Hepacivirus/genética , Interações Hospedeiro-Patógeno , Humanos , Helicase IFIH1 Induzida por Interferon , Migração e Rolagem de Leucócitos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Poli I-C/farmacologia , Interferência de RNA , Receptores Tipo II do Fator de Necrose Tumoral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
13.
Mediators Inflamm ; 2013: 279781, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23766558

RESUMO

INTRODUCTION: Inflammation and endothelium-derived superoxides are important pathomechanisms in atherothrombotic diseases. We could previously show that the tyrosine phosphatase SHP-1 acts as a negative regulator in endothelial superoxide production. In this study we investigated the influence of SHP-1 on platelet-endothelium interaction and arterial thrombosis in TNFα -induced endothelial inflammation in vivo. METHODS: Arteriolar thrombosis and platelet rolling in vivo were investigated in C57BL/6 mice using intravital microscopy in the dorsal skinfold chamber microcirculation model. RESULTS: Inhibition of SHP-1 by the specific pharmacological inhibitor sodium stibogluconate did not significantly enhance platelet-endothelium interaction in vivo under physiological conditions but led to an augmented fraction of rolling platelets in TNFα -induced systemic inflammation. Accordingly, ferric-chloride-induced arteriolar thrombus formation, which was already increased by SHP-1 inhibition, was further enhanced in the setting of TNFα -induced inflammation. Platelet aggregation in vitro as well as ex vivo was not influenced by SHP-1-inhibition. In cultured endothelial cells, sodium stibogluconate increased TNFα -induced surface expression of p-selectin and von Willebrand factor. Additionally, TNFα increased SHP-1 activity and protein expression. CONCLUSIONS: The endothelial tyrosine phosphatase SHP-1 plays an important role for vascular hemostasis in vivo, which is crucial in TNF α -induced endothelial inflammation where it may serve as an autoinhibitory molecule to prevent excess inflammatory response and thrombus formation.


Assuntos
Plaquetas/metabolismo , Endotélio/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Gluconato de Antimônio e Sódio/farmacologia , Western Blotting , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteína Tirosina Fosfatase não Receptora Tipo 6/antagonistas & inibidores , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...