Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-470269

RESUMO

BackgroundIn the aftermath of Covid-19, some patients develop a fibrotic lung disease, i.e., post-COVID-19 lung disease (PCLD), for which we currently lack insights into pathogenesis, disease models, or treatment options. MethodUsing an AI-guided approach, we analyzed > 1000 human lung transcriptomic datasets associated with various lung conditions using two viral pandemic signatures (ViP and sViP) and one covid lung-derived signature. Upon identifying similarities between COVID-19 and idiopathic pulmonary fibrosis (IPF), we subsequently dissected the basis for such similarity from molecular, cytopathic, and immunologic perspectives using a panel of IPF-specific gene signatures, alongside signatures of alveolar type II (AT2) cytopathies and of prognostic monocyte-driven processes that are known drivers of IPF. Transcriptome-derived findings were used to construct protein-protein interaction (PPI) network to identify the major triggers of AT2 dysfunction. Key findings were validated in hamster and human adult lung organoid (ALO) pre-clinical models of COVID-19 using immunohistochemistry and qPCR. FindingsCOVID-19 resembles IPF at a fundamental level; it recapitulates the gene expression patterns (ViP and IPF signatures), cytokine storm (IL15-centric), and the AT2 cytopathic changes, e.g., injury, DNA damage, arrest in a transient, damage-induced progenitor state, and senescence-associated secretory phenotype (SASP). These immunocytopathic features were induced in pre-clinical COVID models (ALO and hamster) and reversed with effective anti-CoV-2 therapeutics in hamsters. PPI-network analyses pinpointed ER stress as one of the shared early triggers of both diseases, and IHC studies validated the same in the lungs of deceased subjects with COVID-19 and SARS-CoV-2-challenged hamster lungs. Lungs from tg-mice, in which ER stress is induced specifically in the AT2 cells, faithfully recapitulate the host immune response and alveolar cytopathic changes that are induced by SARS-CoV-2. InterpretationLike IPF, COVID-19 may be driven by injury-induced ER stress that culminates into progenitor state arrest and SASP in AT2 cells. The ViP signatures in monocytes may be key determinants of prognosis. The insights, signatures, disease models identified here are likely to spur the development of therapies for patients with IPF and other fibrotic interstitial lung diseases. FundingThis work was supported by the National Institutes for Health grants R01-GM138385 and AI155696 and funding from the Tobacco-Related disease Research Program (R01RG3780). One Sentence SummarySevere COVID-19 triggers cellular processes seen in fibrosing Interstitial Lung Disease RESEARCH IN CONTEXTO_ST_ABSEvidence before this studyC_ST_ABSIn its aftermath, the COVID-19 pandemic has left many survivors, almost a third of those who recovered, with a mysterious long-haul form of the disease which culminates in a fibrotic form of interstitial lung disease (post-COVID-19 ILD). Post-COVID-19 ILD remains a largely unknown entity. Currently, we lack insights into the core cytopathic features that drive this condition. Added value of this studyUsing an AI-guided approach, which involves the use of sets of gene signatures, protein-protein network analysis, and a hamster model of COVID-19, we have revealed here that COVID-19 -lung fibrosis resembles IPF, the most common form of ILD, at a fundamental level--showing similar gene expression patterns in the lungs and blood, and dysfunctional AT2 processes (ER stress, telomere instability, progenitor cell arrest, and senescence). These findings are insightful because AT2 cells are known to contain an elegant quality control network to respond to intrinsic or extrinsic stress; a failure of such quality control results in diverse cellular phenotypes, of which ER stress appears to be a point of convergence, which appears to be sufficient to drive downstream fibrotic remodeling in the lung. Implications of all the available evidenceBecause unbiased computational methods identified the shared fundamental aspects of gene expression and cellular processes between COVID-19 and IPF, the impact of our findings is likely to go beyond COVID-19 or any viral pandemic. The insights, tools (disease models, gene signatures, and biomarkers), and mechanisms identified here are likely to spur the development of therapies for patients with IPF and, other fibrotic interstitial lung diseases, all of whom have limited or no treatment options. To dissect the validated prognostic biomarkers to assess and track the risk of pulmonary fibrosis and develop therapeutics to halt fibrogenic progression.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-305698

RESUMO

We sought to define the host immune response, a.k.a, the "cytokine storm" that has been implicated in fatal COVID-19 using an AI-based approach. Over 45,000 transcriptomic datasets of viral pandemics were analyzed to extract a 166-gene signature using ACE2 as a seed gene; ACE2 was rationalized because it encodes the receptor that facilitates the entry of SARS-CoV-2 (the virus that causes COVID-19) into host cells. Surprisingly, this 166-gene signature was conserved in all viral pandemics, including COVID-19, and a subset of 20-genes classified disease severity, inspiring the nomenclatures ViP and severe-ViP signatures, respectively. The ViP signatures pinpointed a paradoxical phenomenon wherein lung epithelial and myeloid cells mount an IL15 cytokine storm, and epithelial and NK cell senescence and apoptosis determines severity/fatality. Precise therapeutic goals were formulated and subsequently validated in high-dose SARS-CoV-2-challenged hamsters using neutralizing antibodies that abrogate SARS-CoV-2*ACE2 engagement or a directly acting antiviral agent, EIDD-2801. IL15/IL15RA were elevated in the lungs of patients with fatal disease, and plasma levels of the cytokine tracked with disease severity. Thus, the ViP signatures provide a quantitative and qualitative framework for titrating the immune response in viral pandemics and may serve as a powerful unbiased tool to rapidly assess disease severity and vet candidate drugs. One Sentence SummaryThe host immune response in COVID-19. PANEL: RESEARCH IN CONTEXTO_ST_ABSEvidence before this studyC_ST_ABSThe SARS-CoV-2 pandemic has inspired many groups to find innovative methodologies that can help us understand the host immune response to the virus; unchecked proportions of such immune response have been implicated in fatality. We searched GEO and ArrayExpress that provided many publicly available gene expression data that objectively measure the host immune response in diverse conditions. However, challenges remain in identifying a set of host response events that are common to every condition. There are no studies that provide a reproducible assessment of prognosticators of disease severity, the host response, and therapeutic goals. Consequently, therapeutic trials for COVID-19 have seen many more misses than hits. This work used multiple (> 45,000) gene expression datasets from GEO and ArrayExpress and analyzed them using an unbiased computational approach that relies upon fundamentals of gene expression patterns and mathematical precision when assessing them. Added value of this studyThis work identifies a signature that is surprisingly conserved in all viral pandemics, including Covid-19, inspiring the nomenclature ViP-signature. A subset of 20-genes classified disease severity in respiratory pandemics. The ViP signatures pinpointed the nature and source of the cytokine storm mounted by the host. They also helped formulate precise therapeutic goals and rationalized the repurposing of FDA-approved drugs. Implications of all the available evidenceThe ViP signatures provide a quantitative and qualitative framework for assessing the immune response in viral pandemics when creating pre-clinical models; they serve as a powerful unbiased tool to rapidly assess disease severity and vet candidate drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...