RESUMO
Forest restoration have had limited success due to intense and prolonged droughts in Mediterranean-type ecosystems. In this context, knowledge of growth and physiology in seedlings of different provenances can be useful in the selection of appropriate seed sources for restoration. In this study we investigated variations in survival, growth, and leaf-level physiology of five provenances of Quillaja saponaria Mol. and five provenances of Cryptocarya alba Mol. originated from coastal and Pre Andean sites exhibiting latitudinal-related climate differences in central Chile. Seedlings were grown in a nursery on 600 mL pots for 18 months and then planted in a dryland site severely damaged by fire. One year after establishment, we measured survival, growth, and leaf-level physiology. We also analyzed the relationship between outplanting survival with seedling characteristics prior to planting, and the relationship between growth and survival with physiological traits and with climate variables. Growth and survival were similar among provenances of Q. saponaria and C. alba, with the exception of differing heights observed within the provenance of Q. saponaria. Initial root collar diameter of Q. saponaria was observed to be positively correlated to outplanting survival. With the exception of photosynthesis in Q. saponaria, all provenances of both species differed in the leaf-level physiological traits. Those provenances originating from interior dryland sites exhibited lower stomatal conductance and used water more efficiently. The opposite was true for provenances coming from coastal sites. In outplanting sites with Mediterranean-type climates that have been damage by severe fire, selections based on larger diameter seedlings, especially for Q. saponaria and from interior and pre-Andean provenances, will likely improve outplanting success.
RESUMO
The midday stem water potential (Ψs) and stomatal conductance (gs) have been traditionally used to monitor the water status of cherry trees (Prunus avium L.). Due to the complexity of direct measurement, the use of infrared thermography has been proposed as an alternative. This study compares Ψs and gs against crop water stress indexes (CWSI) calculated from thermal infrared (TIR) data from high-resolution (HR) and low-resolution (LR) cameras for two cherry tree cultivars: 'Regina' and 'Sweetheart'. For this purpose, a water stress-recovery cycle experiment was carried out at the post-harvest period in a commercial drip-irrigated cherry tree orchard under three irrigation treatments based on Ψs levels. The water status of trees was measured weekly using Ψs, gs, and compared to CWSIs, computed from both thermal cameras. Results showed that the accuracy in the estimation of CWSIs was not statistically significant when comparing both cameras for the representation of Ψs and gs in both cultivars. The performance of all evaluated physiological indicators presented similar trends for both cultivars, and the averaged differences between CWSI's from both cameras were 11 ± 0.27%. However, these CWSI's were not able to detect differences among irrigation treatments as compared to Ψs and gs.