Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1195: 339422, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35090647

RESUMO

The growing importance of fluoropolymers in high-tech applications and green technologies results in the rising need for their characterization. In contrast to conventional methods used for this task, laser-induced breakdown spectroscopy (LIBS) provides the advantage of a spatially resolved analysis. Nevertheless, the high excitation energy of fluorine results in low sensitivity of the atomic F(I) lines, which limits the feasibility of its LIBS-based analysis. This work presents a novel approach for quantitative mapping of fluorine in fluoropolymer samples. It bases on monitoring of molecular emission bands (CuF or CaF) arising from fluorine containing molecules. These species were generated during later stages of the LIBS plasma by a recombination of fluorine atoms originating from fluoropolymer sample with a molecule-forming partner (Cu or Ca) stemming from a surface coating. This approach enables F detection limits in the parts per million (µg g-1) range and elemental imaging using single shot measurements. The elements required for molecular formation are deposited on the sample surface prior to analysis. We evaluate two techniques - spray coating and sputter coating - with regards to their effects on sensitivity and spatial resolution in elemental mapping. Overall, both methods proved to be suitable for a spatially resolved analysis of fluorine: whereas sputter-coating of copper yielded a better sensitivity, spray coating of calcium provided a higher spatial resolution.


Assuntos
Flúor , Lasers , Cálcio , Fluoretos , Análise Espectral
2.
Anal Bioanal Chem ; 413(26): 6581-6594, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34462788

RESUMO

Over the past few years, laser-induced breakdown spectroscopy (LIBS) has earned a lot of attention in the field of online polymer identification. Unlike the well-established near-infrared spectroscopy (NIR), LIBS analysis is not limited by the sample thickness or color and therefore seems to be a promising candidate for this task. Nevertheless, the similar elemental composition of most polymers results in high similarity of their LIBS spectra, which makes their discrimination challenging. To address this problem, we developed a novel chemometric strategy based on a systematic optimization of two factors influencing the discrimination ability: the set of experimental conditions (laser energy, gate delay, and atmosphere) employed for the LIBS analysis and the set of spectral variables used as a basis for the polymer discrimination. In the process, a novel concept of spectral descriptors was used to extract chemically relevant information from the polymer spectra, cluster purity based on the k-nearest neighbors (k-NN) was established as a suitable tool for monitoring the extent of cluster overlaps and an in-house designed random forest (RDF) experiment combined with a cluster purity-governed forward selection algorithm was employed to identify spectral variables with the greatest relevance for polymer identification. Using this approach, it was possible to discriminate among 20 virgin polymer types, which is the highest number reported in the literature so far. Additionally, using the optimized experimental conditions and data evaluation, robust discrimination performance could be achieved even with polymer samples containing carbon black or other common additives, which hints at an applicability of the developed approach to real-life samples.

3.
ACS Appl Bio Mater ; 2(4): 1477-1489, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35026922

RESUMO

This communication is focused on the synthesis, characterization and experimental proof of the mechanism of antimicrobial activity of powders from the molybdenum-tungsten-oxygen (Mo-W-O) system. Materials with a discrete ratio of Mo/W ranging from 100% MoO3 to 100% WO3 with a stepwise increase of 5-10 wt % W were synthesized by the spray drying method following calcination. Spherical hollow particles with a broad size distribution were formed and the composition influenced the crystalline phases in such a way that either pure and/or mixed oxides (Mo0.6W0.4O3) were obtained. A good correlation between composition variation and phases present on the antimicrobial activity is obtained and provides a detailed screening of the activity efficiency versus compositional transition. Antimicrobial tests were performed against a model Gram-negative bacterium (Escherichia coli). Furthermore, the mechanism of antimicrobial activity is proven by correlating the medium acidification via pH measurements to the bacteria lifespan at low pH values. The mechanism is additionally supported by the bacterial growth when a buffered nutrient medium was used, together with the evidence that the powder particles have no disruptive effect on the cell wall. Consequently, an extended mechanism is proposed for the mixed oxide, relating both the structure and solubility results. Solubility measurements displayed a steep decrease in metal ions concentration with the addition of W. A narrow compositional range was identified (80 to 60 wt % Mo) where the antimicrobial activity was present, which is concurrent with a very strong decrease in solubility. Materials within this range show adequate features for being implemented into hybrid systems consisting of inorganic materials-polymers/varnishes that can be used for touch surfaces in healthcare settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...