Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 12: 738617, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764943

RESUMO

Alternaria brassicae is an important necrotrophic pathogen that infects the Brassicaceae family. A. brassicae, like other necrotrophs, also secretes various proteinaceous effectors and metabolites that cause cell death to establish itself in the host. However, there has been no systematic study of A. brassicae effectors and their roles in pathogenesis. The availability of the genome sequence of A. brassicae in public domain has enabled the search for effectors and their functional characterization. Nep1-like proteins (NLPs) are a superfamily of proteins that induce necrosis and ethylene biosynthesis. They have been reported from a variety of microbes including bacteria, fungi, and oomycetes. In this study, we identified two NLPs from A. brassicae viz. AbrNLP1 and AbrNLP2 and functionally characterized them. Although both AbrNLPs were found to be secretory in nature, they localized differentially inside the plant. AbrNLP2 was found to induce necrosis in both host and non-host species, while AbrNLP1 could not induce necrosis in both species. Additionally, AbrNLP2 was shown to induce pathogen-associated molecular pattern (PAMP)-triggered immunity in both host and non-host species. Overall, our study indicates that AbrNLPs are functionally and spatially (subcellular location) distinct and may play different but important roles during the pathogenesis of A. brassicae.

2.
Acta Trop ; 176: 29-33, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28751162

RESUMO

Codon usage bias is due to the non-random usage of synonymous codons for coding amino acids. The synonymous sites are under weak selection, and codon usage bias is maintained by the equilibrium in mutational bias, genetic drift and selection pressure. The differential codon usage choices are also relevant to human infecting Plasmodium species. Recently, P. knowlesi switches its natural host, long-tailed macaques, and starts infecting humans. This review focuses on the comparative analysis of codon usage choices among human infecting P. falciparum and P. vivax along with P. knowlesi species taking their coding sequence data. The variation in GC content, amino acid frequencies, effective number of codons and other factors plays a crucial role in determining synonymous codon choices. Within species codon choices are more similar for P. vivax and P. knowlesi in comparison with P. falciparum species. This study suggests that synonymous codon choice modulates the gene expression level, mRNA stability, ribosome speed, protein folding, translation efficiency and its accuracy in Plasmodium species, and provides a valuable information regarding the codon usage pattern to facilitate gene cloning as well as expression and transfection studies for malaria causing species.


Assuntos
Códon , Plasmodium/genética , Composição de Bases , Evolução Molecular , Expressão Gênica , Humanos , Biossíntese de Proteínas , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA