Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 25(18): 21229-21240, 2017 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-29041528

RESUMO

We experimentally show an all-optical wavelength conversion of 8 × 32-GBd single-polarization 16QAM signals using a silicon nano-rib waveguide. The application of reverse biasing of the p-i-n junction of the waveguide allows a conversion efficiency of -8.5 dB with a measured 3-dB optical bandwidth of about 40 nm. Using digital coherent reception, it is shown that the receiver optical signal-to-noise ratio penalty, at a bit-error ratio of 1 × 10-3, of the wavelength-converted signals over all eight channels was less than 0.6 dB with reference to their respective back-to-back signal channels.

2.
Opt Express ; 22(5): 5029-36, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663841

RESUMO

Phase regeneration of differential phase-shift keying (DPSK) signals is demonstrated using a silicon waveguide as nonlinear medium for the first time. A p-i-n junction across the waveguide enables decreasing the nonlinear losses introduced by free-carrier absorption (FCA), thus allowing phase-sensitive extinction ratios as high as 20 dB to be reached under continuous-wave (CW) pumping operation. Furthermore the regeneration properties are investigated under dynamic operation for a 10-Gb/s DPSK signal degraded by phase noise, showing receiver sensitivity improvements above 14 dB. Different phase noise frequencies and amplitudes are examined, resulting in an improvement of the performance of the regenerated signal in all the considered cases.

3.
Opt Express ; 20(12): 13100-7, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22714337

RESUMO

In this paper we present four-wave mixing (FWM) based parametric conversion experiments in p-i-n diode assisted silicon-on-insulator (SOI) nano-rib waveguides using continuous-wave (CW) light around 1550 nm wavelength. Using a reverse biased p-i-n waveguide diode we observe an increase of the wavelength conversion efficiency of more than 4.5 dB compared to low loss nano-rib waveguides without p-i-n junction, achieving a peak efficiency of -1 dB. Conversion efficiency improves also by more than 7 dB compared to previously reported experiments deploying 1.5 µm SOI waveguides with p-i-n structure. To the best of our knowledge, the observed peak conversion efficiency of -1dB is the highest CW efficiency in SOI reported so far.

4.
Opt Express ; 19(10): 9915-22, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21643248

RESUMO

In this paper we present a detailed analysis of the carrier lifetime for a p-i-n junction on silicon nano-rib waveguides. Several factors determining efficiency of carriers removal from the waveguiding region will be discussed. We compare different structure geometries and spacings between p and n doped regions to show the way to optimize electrons and holes sweeping for CW nonlinear optical devices.

5.
Opt Express ; 17(21): 18518-24, 2009 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-20372582

RESUMO

We present the design, fabrication and characterization of Bragg reflectors on silicon-on-insulator rib waveguides. The fabrication is based on a new double lithographic process, combining electron-beam lithography for the grating and photolithography for the waveguides. This process allows the realization of low loss reflectors, which were fully characterized. The influence of the etching depth and of the waveguide geometry on the reflector performance is considered. We demonstrate a reflectivity larger than 80% over a bandwidth of 0.8 nm with an insertion loss of only 0.5 dB. A thermal tunability of the device is also considered, showing that a shift of the reflected wavelength of 77 pm/K is possible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...