Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
Cancer Cell ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38759656

RESUMO

Total tumor clearance through immunotherapy is associated with a fully coordinated innate and adaptive immune response, but knowledge on the exact contribution of each immune cell subset is limited. We show that therapy-induced intratumoral CD8+ T cells recruited and skewed late-stage activated M1-like macrophages, which were critical for effective tumor control in two different murine models of cancer immunotherapy. The activated CD8+ T cells summon these macrophages into the tumor and their close vicinity via CCR5 signaling. Exposure of non-polarized macrophages to activated T cell supernatant and tumor lysate recapitulates the late-stage activated and tumoricidal phenotype in vitro. The transcriptomic signature of these macrophages is also detected in a similar macrophage population present in human tumors and coincides with clinical response to immune checkpoint inhibitors. The requirement of a functional co-operation between CD8+ T cells and effector macrophages for effective immunotherapy gives warning to combinations with broad macrophage-targeting strategies.

2.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38644995

RESUMO

Previous work has shown that innate immune sensing of tumors involves the host STING pathway, which leads to IFN-ß production, dendritic cell (DC) activation, and T cell priming against tumor antigens. This observation has led to the development of STING agonists as a potential cancer therapeutic. However, despite promising results in mouse studies using transplantable tumor models, clinical testing of STING agonists has shown activity in only a minority of patients. Thus, further study of innate immune pathways in anti-tumor immunity is paramount. Innate immune activation in response to a pathogen rarely occurs through stimulation of only one signaling pathway, and activating multiple innate immune pathways similar to a natural infection is one possible strategy to improve the efficacy of STING agonists. To test this, we performed experiments with the STING agonist DMXAA alone or in combination with several TLR agonists. We found that LPS + DMXAA induced significantly greater IFN-ß transcription than the sum of either agonist alone. To explain this synergy, we assayed each step of STING pathway signaling. LPS did not increase STING protein aggregation, IRF3 phosphorylation, or IRF3 nuclear translocation beyond what occurred with DMXAA alone. However, since the IFN-ß promoter also includes NF-κB binding sites, we additionally examined the NF-κB pathway. In fact, LPS increased the phosphorylation and nuclear translocation of the NF-κB subunit p65, and NF-κB signaling was required for the observed synergy. Intratumoral injection of suboptimal doses of LPS + DMXAA resulted in significantly improved tumor control of B16 melanoma in vivo compared to either agonist alone. Our results suggest that combinatorial signaling through TLR4 and STING results in optimal innate signaling via co-involvement of NF-κB and IRF3, and that combined engagement of these two pathways has therapeutic potential.

3.
Cell Rep ; 43(5): 114141, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38656869

RESUMO

The cellular source of positive signals that reinvigorate T cells within the tumor microenvironment (TME) for the therapeutic efficacy of programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) blockade has not been clearly defined. We now show that Batf3-lineage dendritic cells (DCs) are essential in this process. Flow cytometric analysis, gene-targeted mice, and blocking antibody studies revealed that 4-1BBL is a major positive co-stimulatory signal provided by these DCs within the TME that translates to CD8+ T cell functional reinvigoration and tumor regression. Immunofluorescence and spatial transcriptomics on human tumor samples revealed clustering of Batf3+ DCs and CD8+ T cells, which correlates with anti-PD-1 efficacy. In addition, proximity to Batf3+ DCs within the TME is associated with CD8+ T cell transcriptional states linked to anti-PD-1 response. Our results demonstrate that Batf3+ DCs within the TME are critical for PD-1/PD-L1 blockade efficacy and indicate a major role for the 4-1BB/4-1BB ligand (4-1BBL) axis during this process.

4.
J Transl Med ; 21(1): 508, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507765

RESUMO

Outcomes for patients with melanoma have improved over the past decade with the clinical development and approval of immunotherapies targeting immune checkpoint receptors such as programmed death-1 (PD-1), programmed death ligand 1 (PD-L1) or cytotoxic T lymphocyte antigen-4 (CTLA-4). Combinations of these checkpoint therapies with other agents are now being explored to improve outcomes and enhance benefit-risk profiles of treatment. Alternative inhibitory receptors have been identified that may be targeted for anti-tumor immune therapy, such as lymphocyte-activation gene-3 (LAG-3), as have several potential target oncogenes for molecularly targeted therapy, such as tyrosine kinase inhibitors. Unfortunately, many patients still progress and acquire resistance to immunotherapy and molecularly targeted therapies. To bypass resistance, combination treatment with immunotherapies and single or multiple TKIs have been shown to improve prognosis compared to monotherapy. The number of new combinations treatment under development for melanoma provides options for the number of patients to achieve a therapeutic benefit. Many diagnostic and prognostic assays have begun to show clinical applicability providing additional tools to optimize and individualize treatments. However, the question on the optimal algorithm of first- and later-line therapies and the search for biomarkers to guide these decisions are still under investigation. This year, the Melanoma Bridge Congress (Dec 1st-3rd, 2022, Naples, Italy) addressed the latest advances in melanoma research, focusing on themes of paramount importance for melanoma prevention, diagnosis and treatment. This included sessions dedicated to systems biology on immunotherapy, immunogenicity and gene expression profiling, biomarkers, and combination treatment strategies.


Assuntos
Melanoma , Humanos , Melanoma/terapia , Melanoma/tratamento farmacológico , Imunoterapia , Antígeno CTLA-4 , Itália
5.
Eur J Cancer ; 189: 112923, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37301715

RESUMO

BACKGROUND: Immune checkpoint inhibition (ICI) has improved clinical outcomes for metastatic melanoma patients; however, 65-80% of patients treated with ICI experience immune-related adverse events (irAEs). Given the plausible link of irAEs with underlying host immunity, we explored whether germline genetic variants controlling the expression of 42 immunomodulatory genes were associated with the risk of irAEs in melanoma patients treated with the single-agent anti-CTLA-4 antibody ipilimumab (IPI). METHODS: We identified 42 immunomodulatory expression quantitative trait loci (ieQTLs) most significantly associated with the expression of 382 immune-related genes. These germline variants were genotyped in IPI-treated melanoma patients, collected as part of a multi-institutional collaboration. We tested the association of ieQTLs with irAEs in a discovery cohort of 95 patients, followed by validation in an additional 97 patients. RESULTS: We found that the alternate allele of rs7036417, a variant linked to increased expression of SYK, was strongly associated with an increased risk of grade 3-4 toxicity [odds ratio (OR) = 7.46; 95% confidence interval (CI) = 2.65-21.03; p = 1.43E-04]. This variant was not associated with response (OR = 0.90; 95% CI = 0.37-2.21; p = 0.82). CONCLUSION: We report that rs7036417 is associated with increased risk of severe irAEs, independent of IPI efficacy. SYK plays an important role in B-cell/T-cell expansion, and increased pSYK has been reported in patients with autoimmune disease. The association between rs7036417 and IPI irAEs in our data suggests a role of SYK overexpression in irAE development. These findings support the hypothesis that inherited variation in immune-related pathways modulates ICI toxicity and suggests SYK as a possible future target for therapies to reduce irAEs.


Assuntos
Doenças Autoimunes , Melanoma , Humanos , Locos de Características Quantitativas , Ipilimumab/efeitos adversos , Melanoma/tratamento farmacológico , Melanoma/genética , Estudos Retrospectivos
6.
J Immunother Cancer ; 11(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37385724

RESUMO

BACKGROUND: SEA-CD40 is an investigational, non-fucosylated, humanized monoclonal IgG1 antibody that activates CD40, an immune-activating tumor necrosis factor receptor superfamily member. SEA-CD40 exhibits enhanced binding to activating FcγRIIIa, possibly enabling greater immune stimulation than other CD40 agonists. A first-in-human phase 1 trial was conducted to examine safety, pharmacokinetics, and pharmacodynamics of SEA-CD40 monotherapy in patients with advanced solid tumors and lymphoma. METHODS: SEA-CD40 was administered intravenously to patients with solid tumors or lymphoma in 21-day cycles with standard 3+3 dose escalation at 0.6, 3, 10, 30, 45, and 60 µg/kg. An intensified dosing regimen was also studied. The primary objectives of the study were to evaluate the safety and tolerability and identify the maximum tolerated dose of SEA-CD40. Secondary objectives included evaluation of the pharmacokinetic parameters, antitherapeutic antibodies, pharmacodynamic effects and biomarker response, and antitumor activity. RESULTS: A total of 67 patients received SEA-CD40 including 56 patients with solid tumors and 11 patients with lymphoma. A manageable safety profile was observed, with predominant adverse events of infusion/hypersensitivity reactions (IHRs) reported in 73% of patients. IHRs were primarily ≤grade 2 with an incidence associated with infusion rate. To mitigate IHRs, a standardized infusion approach was implemented with routine premedication and a slowed infusion rate. SEA-CD40 infusion resulted in potent immune activation, illustrated by dose dependent cytokine induction with associated activation and trafficking of innate and adaptive immune cells. Results suggested that doses of 10-30 µg/kg may result in optimal immune activation. SEA-CD40 monotherapy exhibited evidence of antitumor activity, with a partial response in a patient with basal cell carcinoma and a complete response in a patient with follicular lymphoma. CONCLUSIONS: SEA-CD40 was tolerable as monotherapy and induced potent dose dependent immune cell activation and trafficking consistent with immune activation. Evidence of monotherapy antitumor activity was observed in patients with solid tumors and lymphoma. Further evaluation of SEA-CD40 is warranted, potentially as a component of a combination regimen. TRIAL REGISTRATION NUMBER: NCT02376699.


Assuntos
Antineoplásicos , Carcinoma Basocelular , Linfoma Folicular , Neoplasias Cutâneas , Humanos , Anticorpos Monoclonais , Antígenos CD40 , Anticorpos Monoclonais Humanizados
7.
Oncoimmunology ; 12(1): 2197358, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035636

RESUMO

Many cancer patients experience toxicity during checkpoint blockade immunotherapy, which often leads to treatment discontinuation. To this end, understanding the mechanisms mediating immune-related adverse events (irAE) should ultimately enable improvement in clinical outcomes. Recent work has revealed that tissue-resident memory T (TRM) cells are locally expanded in irAE-dermatitis and -colitis.


Assuntos
Células T de Memória , Neoplasias , Humanos , Neoplasias/terapia , Imunoterapia/efeitos adversos
8.
Oncologist ; 28(5): 440-448, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36595378

RESUMO

BACKGROUND: Side effects of immune checkpoint inhibitors (ICIs), called immune-related adverse events (irAEs), closely resemble primary autoimmune or rheumatic diseases. We aimed to understand the clinical utility of rheumatic autoantibodies (rhAbs) for diagnosing irAEs. PATIENTS AND METHODS: Patients without pre-existing autoimmune disease (pAID) who had cancer treated with ICI(s) treatment from 1/1/2011 to 12/21/2020 and a rhAb checked were retrospectively identified. Logistic regression assessed associations between autoantibodies and irAEs, cancer outcome, and survival. Specificity, sensitivity, and positive/negative predictive values (PPV, NPV) were estimated for key rhAbs and ICI-arthritis. Kaplan-Meier analyzed objective response rate (ORR) and overall survival (OS). RESULTS: A total of 2662 patients were treated with≥1 ICIs. One hundred and thirty-five without pAID had ≥ 1 rhAb tested. Of which 70/135(52%) were female; median age at cancer diagnosis was 62 years with most common cancers: melanoma (23%) or non-small cell lung cancer (21%), 96/135 (75%) were anti-PD1/PDL1 treated. Eighty had a rhAb ordered before ICI, 96 after ICI, and 12 before and after. Eighty-two (61%) experienced an irAE, 33 (24%) with rheumatic-irAE. Pre-ICI RF showed significant association with rheumatic-irAEs (OR = 25, 95% CI, 1.52-410.86, P = .024). Pre- and post-ICI RF yielded high specificity for ICI-arthritis (93% and 78%), as did pre- and post-ICI CCP (100% and 91%). Pre-ICI RF carried 93% NPV and pre-ICI CCP had 89% PPV for ICI-arthritis. No variables were significantly correlated with ORR. Any-type irAE, rheumatic-irAE and ICI-arthritis were all associated with better OS (P = .000, P = .028, P = .019). CONCLUSIONS: Pre-ICI RF was associated with higher odds of rheumatic-irAEs. IrAEs had better OS; therefore, clinical contextualization for rhAbs is critical to prevent unnecessary withholding of lifesaving ICI for fear of irAEs.


Assuntos
Artrite , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Estudos Retrospectivos , Autoanticorpos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico
9.
Biopreserv Biobank ; 21(2): 166-175, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35771982

RESUMO

Biobanking during the COVID-19 pandemic presented unique challenges regarding patient enrollment, sample collection, and experimental analysis. This report details the ways in which we rapidly overcame those challenges to create a robust database of clinical information and patient samples while maintaining clinician and researcher safety. We developed a pipeline using REDCap (Research Electronic Data Capture) to coordinate electronic informed consent, sample collection, immunological assay execution, and data analysis for biobanking samples from patients with COVID-19. We then integrated immunological assay data with clinical data extracted from the electronic health record to link study parameters with clinical readouts. Of the 193 inpatients who participated in this study, 138 consented electronically and 56 provided paper consent. We collected and banked blood samples to measure circulating cytokines and chemokines, peripheral immune cell composition and activation status, anti-COVID-19 antibodies, and germline gene polymorphisms. In addition, we collected DNA and RNA from nasopharyngeal swabs to assess viral titer and microbiome composition by 16S sequencing. The rapid spread and contagious nature of COVID-19 required special considerations and innovative solutions to biobank samples quickly while protecting researchers and clinicians. Overall, this workflow and computational pipeline allowed for comprehensive immune profiling of 193 inpatients infected with COVID-19, as well as 89 outpatients, 157 patients receiving curbside COVID-19 testing, and 86 healthy controls. We describe a novel electronic framework for biobanking and analyzing patient samples during COVID-19, and present insights and strategies that can be applied more broadly to other biobank studies.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Bancos de Espécimes Biológicos , Teste para COVID-19 , Pandemias , Consentimento Livre e Esclarecido , Bases de Dados Factuais
10.
J Clin Oncol ; 41(3): 528-540, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35998300

RESUMO

PURPOSE: The combination of talimogene laherparepvec (T-VEC) and pembrolizumab previously demonstrated an acceptable safety profile and an encouraging complete response rate (CRR) in patients with advanced melanoma in a phase Ib study. We report the efficacy and safety from a phase III, randomized, double-blind, multicenter, international study of T-VEC plus pembrolizumab (T-VEC-pembrolizumab) versus placebo plus pembrolizumab (placebo-pembrolizumab) in patients with advanced melanoma. METHODS: Patients with stage IIIB-IVM1c unresectable melanoma, naïve to antiprogrammed cell death protein-1, were randomly assigned 1:1 to T-VEC-pembrolizumab or placebo-pembrolizumab. T-VEC was administered at ≤ 4 × 106 plaque-forming unit (PFU) followed by ≤ 4 × 108 PFU 3 weeks later and once every 2 weeks until dose 5 and once every 3 weeks thereafter. Pembrolizumab was administered intravenously 200 mg once every 3 weeks. The dual primary end points were progression-free survival (PFS) per modified RECIST 1.1 by blinded independent central review and overall survival (OS). Secondary end points included objective response rate per mRECIST, CRR, and safety. Here, we report the primary analysis for PFS, the second preplanned interim analysis for OS, and the final analysis. RESULTS: Overall, 692 patients were randomly assigned (346 T-VEC-pembrolizumab and 346 placebo-pembrolizumab). T-VEC-pembrolizumab did not significantly improve PFS (hazard ratio, 0.86; 95% CI, 0.71 to 1.04; P = .13) or OS (hazard ratio, 0.96; 95% CI, 0.76 to 1.22; P = .74) compared with placebo-pembrolizumab. The objective response rate was 48.6% for T-VEC-pembrolizumab (CRR 17.9%) and 41.3% for placebo-pembrolizumab (CRR 11.6%); the durable response rate was 42.2% and 34.1% for the arms, respectively. Grade ≥ 3 treatment-related adverse events occurred in 20.7% of patients in the T-VEC-pembrolizumab arm and in 19.5% of patients in the placebo-pembrolizumab arm. CONCLUSION: T-VEC-pembrolizumab did not significantly improve PFS or OS compared with placebo-pembrolizumab. Safety results of the T-VEC-pembrolizumab combination were consistent with the safety profiles of each agent alone.


Assuntos
Herpesvirus Humano 1 , Melanoma , Terapia Viral Oncolítica , Humanos , Melanoma/tratamento farmacológico , Terapia Viral Oncolítica/métodos , Método Duplo-Cego
11.
Nat Cancer ; 3(12): 1498-1512, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36443406

RESUMO

Over 500 clinical trials are investigating combination radiotherapy and immune checkpoint blockade (ICB) as cancer treatments; however, the majority of trials have found no positive interaction. Here we perform a comprehensive molecular analysis of a randomized phase I clinical trial of patients with non-small cell lung cancer (NSCLC) treated with concurrent or sequential ablative radiotherapy and ICB. We show that concurrent treatment is superior to sequential treatment in augmenting local and distant tumor responses and in improving overall survival in a subset of patients with immunologically cold, highly aneuploid tumors, but not in those with less aneuploid tumors. In addition, radiotherapy alone decreases intratumoral cytotoxic T cell and adaptive immune signatures, whereas radiotherapy and ICB upregulates key immune pathways. Our findings challenge the prevailing paradigm that local ablative radiotherapy beneficially stimulates the immune response. We propose the use of tumor aneuploidy as a biomarker and therapeutic target in personalizing treatment approaches for patients with NSCLC treated with radiotherapy and ICB.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamento farmacológico , Biomarcadores , Terapia Combinada
12.
JCO Precis Oncol ; 6: e2200454, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36446042

RESUMO

PURPOSE: Immune checkpoint inhibition (ICI) therapy represents one of the great advances in the field of oncology, highlighted by the Nobel Prize in 2018. Multiple predictive biomarkers for ICI benefit have been proposed. These include assessment of programmed death ligand-1 expression by immunohistochemistry, and determination of mutational genotype (microsatellite instability or mismatch repair deficiency or tumor mutational burden) as a reflection of neoantigen expression. However, deployment of these assays has been challenging for oncologists and pathologists alike. METHODS: To address these issues, ASCO and the College of American Pathologists convened a virtual Predictive Factor Summit from September 14 to 15, 2021. Representatives from the academic community, US Food and Drug Administration, Centers for Medicare and Medicaid Services, National Institutes of Health, health insurance organizations, pharmaceutical companies, in vitro diagnostics manufacturers, and patient advocate organizations presented state-of-the-art predictive factors for ICI, associated problems, and possible solutions. RESULTS: The Summit provided an overview of the challenges and opportunities for improvement in assay execution, interpretation, and clinical applications of programmed death ligand-1, microsatellite instability-high or mismatch repair deficient, and tumor mutational burden-high for ICI therapies, as well as issues related to regulation, reimbursement, and next-generation ICI biomarker development. CONCLUSION: The Summit concluded with a plan to generate a joint ASCO/College of American Pathologists strategy for consideration of future research in each of these areas to improve tumor biomarker tests for ICI therapy.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Idoso , Estados Unidos , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Instabilidade de Microssatélites , Patologistas , Medicare , Biomarcadores Tumorais/genética , Neoplasias/diagnóstico
13.
Sci Adv ; 8(40): eabn3777, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36206332

RESUMO

Patients infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can experience life-threatening respiratory distress, blood pressure dysregulation, and thrombosis. This is thought to be associated with an impaired activity of angiotensin-converting enzyme 2 (ACE2), which is the main entry receptor of SARS-CoV-2 and which also tightly regulates blood pressure by converting the vasoconstrictive peptide angiotensin II (AngII) to a vasopressor peptide. Here, we show that a significant proportion of hospitalized patients with COVID-19 developed autoantibodies against AngII, whose presence correlates with lower blood oxygenation, blood pressure dysregulation, and overall higher disease severity. Anti-AngII antibodies can develop upon specific immune reaction to the SARS-CoV-2 proteins Spike or receptor-binding domain (RBD), to which they can cross-bind, suggesting some epitope mimicry between AngII and Spike/RBD. These results provide important insights on how an immune reaction against SARS-CoV-2 can impair blood pressure regulation.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Angiotensina II , Autoanticorpos , Pressão Sanguínea , Epitopos/metabolismo , Humanos , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , SARS-CoV-2 , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus
14.
J Transl Med ; 20(1): 391, 2022 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-36058945

RESUMO

Advances in immune checkpoint and combination therapy have led to improvement in overall survival for patients with advanced melanoma. Improved understanding of the tumor, tumor microenvironment and tumor immune-evasion mechanisms has resulted in new approaches to targeting and harnessing the host immune response. Combination modalities with other immunotherapy agents, chemotherapy, radiotherapy, electrochemotherapy are also being explored to overcome resistance and to potentiate the immune response. In addition, novel approaches such as adoptive cell therapy, oncogenic viruses, vaccines and different strategies of drug administration including sequential, or combination treatment are being tested. Despite the progress in diagnosis of melanocytic lesions, correct classification of patients, selection of appropriate adjuvant and systemic theràapies, and prediction of response to therapy remain real challenges in melanoma. Improved understanding of the tumor microenvironment, tumor immunity and response to therapy has prompted extensive translational and clinical research in melanoma. There is a growing evidence that genomic and immune features of pre-treatment tumor biopsies may correlate with response in patients with melanoma and other cancers, but they have yet to be fully characterized and implemented clinically. Development of novel biomarker platforms may help to improve diagnostics and predictive accuracy for selection of patients for specific treatment. Overall, the future research efforts in melanoma therapeutics and translational research should focus on several aspects including: (a) developing robust biomarkers to predict efficacy of therapeutic modalities to guide clinical decision-making and optimize treatment regimens, (b) identifying mechanisms of therapeutic resistance to immune checkpoint inhibitors that are potentially actionable, (c) identifying biomarkers to predict therapy-induced adverse events, and (d) studying mechanism of actions of therapeutic agents and developing algorithms to optimize combination treatments. During the Melanoma Bridge meeting (December 2nd-4th, 2021, Naples, Italy) discussions focused on the currently approved systemic and local therapies for advanced melanoma and discussed novel biomarker strategies and advances in precision medicine as well as the impact of COVID-19 pandemic on management of melanoma patients.


Assuntos
COVID-19 , Melanoma , Biomarcadores , Humanos , Imunoterapia/métodos , Itália , Melanoma/genética , Pandemias , Microambiente Tumoral
15.
Cancer Immunol Res ; 10(10): 1167-1174, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35977003

RESUMO

Immune checkpoint blockade is therapeutically successful for many patients across multiple cancer types. However, immune-related adverse events (irAE) frequently occur and can sometimes be life threatening. It is critical to understand the immunologic mechanisms of irAEs with the goal of finding novel treatment targets. Herein, we report our analysis of tissues from patients with irAE dermatitis using multiparameter immunofluorescence (IF), spatial transcriptomics, and RNA in situ hybridization (RISH). Skin psoriasis cases were studied as a comparison, as a known Th17-driven disease, and colitis was investigated as a comparison. IF analysis revealed that CD4+ and CD8+ tissue-resident memory T (TRM) cells were preferentially expanded in the inflamed portion of skin in cutaneous irAEs compared with healthy skin controls. Spatial transcriptomics allowed us to focus on areas containing TRM cells to discern functional phenotype and revealed expression of Th1-associated genes in irAEs, compared with Th17-asociated genes in psoriasis. Expression of PD-1, CTLA-4, LAG-3, and other inhibitory receptors was observed in irAE cases. RISH technology combined with IF confirmed expression of IFNγ, CXCL9, CXCL10, and TNFα in irAE dermatitis, as well as IFNγ within TRM cells specifically. The Th1-skewed phenotype was confirmed in irAE colitis cases compared with healthy colon.


Assuntos
Colite , Dermatite , Psoríase , Antígeno CTLA-4 , Colite/induzido quimicamente , Citocinas/metabolismo , Humanos , Inibidores de Checkpoint Imunológico , Células T de Memória , Receptor de Morte Celular Programada 1 , RNA , Fator de Necrose Tumoral alfa
16.
Blood Adv ; 6(24): 6249-6262, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-35977099

RESUMO

Clinical manifestations of severe COVID-19 include coagulopathies that are exacerbated by the formation of neutrophil extracellular traps (NETs). Here, we report that pulmonary lymphatic vessels, which traffic neutrophils and other immune cells to the lung-draining lymph node (LDLN), can also be blocked by fibrin clots in severe COVID-19. Immunostained tissue sections from COVID-19 decedents revealed widespread lymphatic clotting not only in the lung but also in the LDLN, where the extent of clotting correlated with the presence of abnormal, regressed, or missing germinal centers (GCs). It strongly correlated with the presence of intralymphatic NETs. In mice, tumor necrosis factor α induced intralymphatic fibrin clots; this could be inhibited by DNase I, which degrades NETs. In vitro, TNF-α induced lymphatic endothelial cell upregulation of ICAM-1 and CXCL8, among other neutrophil-recruiting factors, as well as thrombomodulin downregulation; in decedents, lymphatic clotting in LDLNs. In a separate cohort of hospitalized patients, serum levels of Myeloperoxidase-DNA (MPO-DNA, a NET marker) inversely correlated with antiviral antibody titers, but D-dimer levels, indicative of blood thrombosis, did not correlate with either. Patients with high MPO-DNA but low D-dimer levels generated poor antiviral antibody titers. This study introduces lymphatic coagulation in lungs and LDLNs as a clinical manifestation of severe COVID-19 and suggests the involvement of NETosis of lymphatic-trafficking neutrophils. It further suggests that lymphatic clotting may correlate with impaired formation or maintenance of GCs necessary for robust antiviral antibody responses, although further studies are needed to determine whether and how lymphatic coagulation affects adaptive immune responses.


Assuntos
COVID-19 , Armadilhas Extracelulares , Trombose , Camundongos , Animais , Trombose/metabolismo , Pulmão/metabolismo , DNA/metabolismo , Linfonodos
17.
Sci Immunol ; 7(73): eabq6509, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35867802

RESUMO

CXCL9 and CXCL10 can be produced by antigen-presenting cells (dendritic cells or macrophages) and by tumor cells. Hoch et al. demonstrated that CXCL9 and CXCL10 co-localize with LAG3+ T cells expressing CCL4 or CXCL13 and contribute to the generation of a "hot" tumor microenvironment.


Assuntos
Quimiocina CXCL10 , Temperatura Alta , Macrófagos , Linfócitos T
18.
J Immunother Cancer ; 10(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35705315

RESUMO

BACKGROUND: A T cell-rich tumor microenvironment has been associated with improved clinical outcome and response to immune checkpoint blockade therapies in several adult cancers. Understanding the mechanisms for lack of immune cell infiltration in tumors is critical for expanding immunotherapy efficacy. To gain new insights into the mechanisms of poor tumor immunogenicity, we turned to pediatric cancers, which are generally unresponsive to checkpoint blockade. METHODS: RNA sequencing and clinical data were obtained for Wilms tumor, rhabdoid tumor, osteosarcoma, and neuroblastoma from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database, and adult cancers from The Cancer Genome Atlas (TCGA). Using an 18-gene tumor inflammation signature (TIS) representing activated CD8+ T cells, we identified genes inversely correlated with the signature. Based on these results, adult tumors were also analyzed, and immunofluorescence was performed on metastatic melanoma samples to assess the MSH2 relationship to anti-programmed cell death protein-1 (PD-1) efficacy. RESULTS: Among the four pediatric cancers, we observed the lowest TIS scores in Wilms tumor. TIS scores were lower in Wilms tumors compared with matched normal kidney tissues, arguing for loss of endogenous T cell infiltration. Pathway analysis of genes upregulated in Wilms tumor and anti-correlated with TIS revealed activated pathways involved DNA repair. The majority of adult tumors in TCGA also showed high DNA repair scores associated with low TIS. Melanoma samples from an independent cohort revealed an inverse correlation between MSH2+ tumor cells and CD8+ T cells. Additionally, melanomas with high MSH2+ tumor cell numbers were largely non-responders to anti-PD-1 therapy. CONCLUSIONS: Increased tumor expression of DNA repair genes is associated with a less robust immune response in Wilms tumor and the majority of TCGA tumor types. Surprisingly, the negative relationship between DNA repair score and TIS remained strong across TCGA when correcting for mutation count, indicating a potential role for DNA repair genes outside of preventing the accumulation of mutations. While loss of DNA repair machinery has been associated with carcinogenesis and mutational antigen generation, our results suggest that hyperexpression of DNA repair genes might be prohibitive for antitumor immunity, arguing for pharmacologic targeting of DNA repair as a potential therapeutic strategy.


Assuntos
Reparo do DNA , Neoplasias Renais , Melanoma , Tumor de Wilms , Adulto , Linfócitos T CD8-Positivos , Criança , Reparo do DNA/genética , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Melanoma/genética , Proteína 2 Homóloga a MutS/genética , Microambiente Tumoral/genética , Tumor de Wilms/tratamento farmacológico , Tumor de Wilms/genética
19.
J Immunother Cancer ; 10(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35732350

RESUMO

BACKGROUND: Patients with cancer were excluded from phase 3 COVID-19 vaccine trials, and the immunogenicity and side effect profiles of these vaccines in this population is not well understood. Patients with cancer can be immunocompromised from chemotherapy, corticosteroids, or the cancer itself, which may affect cellular and/or humoral responses to vaccination. PD-1 is expressed on T effector cells, T follicular helper cells and B cells, leading us to hypothesize that anti-PD-1 immunotherapies may augment antibody or T cell generation after vaccination. METHODS: Antibodies to the SARS-CoV-2 receptor binding domain (RBD) and spike protein were assessed in patients with cancer (n=118) and healthy donors (HD, n=22) after 1, 2 or 3 mRNA vaccine doses. CD4+ and CD8+ T cell reactivity to wild-type (WT) or B.1.617.2 (delta) spike peptides was measured by intracellular cytokine staining. RESULTS: Oncology patients without prior COVID-19 infections receiving immunotherapy (n=36), chemotherapy (n=15), chemoimmunotherapy (n=6), endocrine or targeted therapies (n=6) and those not on active treatment (n=26) had similar RBD and Spike IgG antibody titers to HDs after two vaccinations. Contrary to our hypothesis, PD-1 blockade did not augment antibody titers or T cell responses. Patients receiving B-cell directed therapies (n=14) including anti-CD20 antibodies and multiple myeloma therapies had decreased antibody titers, and 9/14 of these patients were seronegative for RBD antibodies. No differences were observed in WT spike-reactive CD4+ and CD8+ T cell generation between treatment groups. 11/13 evaluable patients seronegative for RBD had a detectable WT spike-reactive CD4+ T cell response. T cells cross-reactive against the B.1.617.2 variant spike peptides were detected in 31/59 participants. Two patients with prior immune checkpoint inhibitor-related adrenal insufficiency had symptomatic hypoadrenalism after vaccination. CONCLUSIONS: COVID-19 vaccinations are safe and immunogenic in patients with solid tumors, who developed similar antibody and T cell responses compared with HDs. Patients on B-cell directed therapies may fail to generate RBD antibodies after vaccination and should be considered for prophylactic antibody treatments. Many seronegative patients do develop a T cell response, which may have an anti-viral effect. Patients with pre-existing adrenal insufficiency may need to take stress dose steroids during vaccination to avoid adrenal crisis.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Neoplasias , Insuficiência Adrenal/complicações , Anticorpos Antivirais/sangue , Formação de Anticorpos , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Humanos , Imunidade Celular , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , SARS-CoV-2 , Linfócitos T/imunologia , Vacinação , Vacinas Sintéticas , Vacinas de mRNA/imunologia
20.
Cancer Cell ; 40(3): 246-248, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35290783

RESUMO

The commensal microbiota is an important source of inter-subject heterogeneity and can impact human health through modulation of host immunity. Because the abundance and metabolic functions of various gut microbes are affected by dietary elements, recent studies in Cell and Science test the links between diet, microbiota, and immune system modulation.


Assuntos
Microbioma Gastrointestinal , Microbiota , Dieta , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...