Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
ACS Sens ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38636962

RESUMO

Advanced healthcare requires novel technologies capable of real-time sensing to monitor acute and long-term health. The challenge relies on converting a real-time quantitative biological and chemical signal into a desired measurable output. Given the success in detecting glucose and the commercialization of glucometers, electrochemical biosensors continue to be a mainstay of academic and industrial research activities. Despite the wealth of literature on electrochemical biosensors, reports are often specific to a particular application (e.g., pathogens, cancer markers, glucose, etc.), and most fail to convey the underlying strategy and design, and if it is transferable to detection of a different analyte. Here we present a tutorial review for those entering this research area that summarizes the basic electrochemical techniques utilized as well as discusses the designs and optimization strategies employed to improve sensitivity and maximize signal output.

2.
Biomacromolecules ; 24(11): 5027-5034, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37877162

RESUMO

Polymeric micelles and especially those based on natural diblocks are of particular interest due to their advantageous properties in terms of molecular recognition, biocompatibility, and biodegradability. We herein report a facile and straightforward synthesis of thermoresponsive elastin-like polypeptide (ELP) and oligonucleotide (ON) diblock bioconjugates, ON-b-ELP, through copper-catalyzed azide-alkyne cycloaddition. The resulting thermosensitive diblock copolymer self-assembles above its critical micelle temperature (CMT ∼30 °C) to form colloidally stable micelles of ∼50 nm diameter. The ON-b-ELP micelles hybridize with an ON complementary strand and maintain their size and stability. Next, we describe the capacity of these micelles to bind proteins, creating more complex structures using the classic biotin-streptavidin pairing and the specific recognition between a transcription factor protein and the ON strand. In both instances, the micelles are intact, form larger structures, and retain their sensitivity to temperature.


Assuntos
Micelas , Fatores de Transcrição , Biomimética , Peptídeos/química , Polímeros/química , Temperatura
3.
Biochemistry ; 62(3): 851-862, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36662673

RESUMO

Monoamine oxidases (MAOs) play a key role in the breakdown of primary and secondary amines. In eukaryotic organisms, these enzymes are vital to the regulation of monoamine neurotransmitters and the degradation of dietary monoamines. MAOs have also been identified in prokaryotic species, although their role in these organisms is not well understood. Here, we report the biophysical and structural properties of a promiscuous, bacterial MAO from Corynebacterium ammoniagenes (caMAO). caMAO catalyzes the oxidation of a number of monoamine substrates including dopamine and norepinephrine, as well as exhibiting some activity with polyamine substrates such as cadaverine. The X-ray crystal structures of Michaelis complexes with seven substrates show that conserved hydrophobic interactions and hydrogen-bonding pattern (for polar substrates) allow the broad specificity range. The structure of caMAO identifies an unusual cysteine (Cys424) residue in the so-called "aromatic cage", which flanks the flavin isoalloxazine ring in the active site. Site-directed mutagenesis, steady-state kinetics in air-saturated buffer, and UV-vis spectroscopy revealed that Cys424 plays a role in the pH dependence and modulation of electrostatics within the caMAO active site. Notably, bioinformatic analysis shows a propensity for variation at this site within the "aromatic cage" of the flavin amine oxidase (FAO) superfamily. Structural analysis also identified the conservation of a secondary substrate inhibition site, present in a homologous member of the superfamily. Finally, genome neighborhood diagram analysis of caMAO in the context of the FAO superfamily allows us to propose potential roles for these bacterial MAOs in monoamine and polyamine degradation and catabolic pathways related to scavenging of nitrogen.


Assuntos
Flavinas , Monoaminoxidase , Monoaminoxidase/química , Domínio Catalítico , Mutagênese Sítio-Dirigida , Flavinas/metabolismo , Poliaminas , Especificidade por Substrato
4.
Chem Sci ; 13(22): 6715-6731, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35756504

RESUMO

Förster resonance energy transfer (FRET) is a widely used and ideal transduction modality for fluorescent based biosensors as it offers high signal to noise with a visibly detectable signal. While intense efforts are ongoing to improve the limit of detection and dynamic range of biosensors based on biomolecule optimization, the selection of and relative location of the dye remains understudied. Herein, we describe a combined experimental and computational study to systematically compare the nature of the dye, i.e., organic fluorophore (Cy5 or Texas Red) vs. inorganic nanoparticle (QD), and the position of the FRET donor or acceptor on the biomolecular components. Using a recently discovered transcription factor (TF)-deoxyribonucleic acid (DNA) biosensor for progesterone, we examine four different biosensor configurations and report the quantum yield, lifetime, FRET efficiency, IC50, and limit of detection. Fitting the computational models to the empirical data identifies key molecular parameters driving sensor performance in each biosensor configuration. Finally, we provide a set of design parameters to enable one to select the fluorophore system for future intermolecular biosensors using FRET-based conformational regulation in in vitro assays and new diagnostic devices.

5.
Microb Genom ; 8(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35584008

RESUMO

Genomics has set the basis for a variety of methodologies that produce high-throughput datasets identifying the different players that define gene regulation, particularly regulation of transcription initiation and operon organization. These datasets are available in public repositories, such as the Gene Expression Omnibus, or ArrayExpress. However, accessing and navigating such a wealth of data is not straightforward. No resource currently exists that offers all available high and low-throughput data on transcriptional regulation in Escherichia coli K-12 to easily use both as whole datasets, or as individual interactions and regulatory elements. RegulonDB (https://regulondb.ccg.unam.mx) began gathering high-throughput dataset collections in 2009, starting with transcription start sites, then adding ChIP-seq and gSELEX in 2012, with up to 99 different experimental high-throughput datasets available in 2019. In this paper we present a radical upgrade to more than 2000 high-throughput datasets, processed to facilitate their comparison, introducing up-to-date collections of transcription termination sites, transcription units, as well as transcription factor binding interactions derived from ChIP-seq, ChIP-exo, gSELEX and DAP-seq experiments, besides expression profiles derived from RNA-seq experiments. For ChIP-seq experiments we offer both the data as presented by the authors, as well as data uniformly processed in-house, enhancing their comparability, as well as the traceability of the methods and reproducibility of the results. Furthermore, we have expanded the tools available for browsing and visualization across and within datasets. We include comparisons against previously existing knowledge in RegulonDB from classic experiments, a nucleotide-resolution genome viewer, and an interface that enables users to browse datasets by querying their metadata. A particular effort was made to automatically extract detailed experimental growth conditions by implementing an assisted curation strategy applying Natural language processing and machine learning. We provide summaries with the total number of interactions found in each experiment, as well as tools to identify common results among different experiments. This is a long-awaited resource to make use of such wealth of knowledge and advance our understanding of the biology of the model bacterium E. coli K-12.


Assuntos
Escherichia coli K12 , Escherichia coli , Escherichia coli/genética , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Regulação Bacteriana da Expressão Gênica , Óperon/genética , Reprodutibilidade dos Testes
6.
ACS Sens ; 7(4): 1132-1137, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35412319

RESUMO

We describe an electrochemical strategy to transduce allosteric transcription factor (aTF) binding affinity to sense steroid hormones. Our approach utilizes square wave voltammetry to monitor changes in current output as a progesterone (PRG)-specific aTF (SRTF1) unbinds from the cognate DNA sequence in the presence of PRG. The sensor detects PRG in artificial urine samples with sufficient sensitivity suitable for clinical applications. Our results highlight the capability of using aTFs as the biorecognition elements to develop electrochemical point-of-care biosensors for the detection of small-molecule biomarkers and analytes.


Assuntos
Técnicas Biossensoriais , Progesterona , Sequência de Bases , Técnicas Biossensoriais/métodos , DNA/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
ACS Omega ; 7(7): 5804-5808, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35224340

RESUMO

Progesterone monitoring is an essential component of in vitro fertilization treatments and reproductive management of dairy cows. Gold-standard biosensors for progesterone monitoring rely on antibodies, which are expensive and difficult to procure. We have developed an alternative transcription factor-based sensor that is superior to conventional progesterone biosensors. Here, we incorporate this transcription factor-based progesterone sensor into an affordable, portable paperfluidic format to facilitate widespread implementation of progesterone monitoring at the point of care. Oligonucleotides labeled with a fluorescent dye are immobilized onto nitrocellulose via a biotin-streptavidin interaction. In the absence of progesterone, these oligonucleotides form a complex with a transcription factor that is fluorescently labeled with tdTomato. In the presence of progesterone, the fluorescent transcription factor unbinds from the immobilized DNA, resulting in a decrease in tdTomato fluorescence. The limit of detection of our system is 27 nm, which is a clinically relevant level of progesterone. We demonstrate that transcription factor-based sensors can be incorporated into paperfluidic devices, thereby making them accessible to a broader population due to the portability and affordability of paper-based devices.

8.
Angew Chem Int Ed Engl ; 59(48): 21597-21602, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32945589

RESUMO

Recently, allosteric transcription factors (TFs) were identified as a novel class of biorecognition elements for in vitro sensing, whereby an indicator of the differential binding affinity between a TF and its cognate DNA exhibits dose-dependent responsivity to an analyte. Described is a modular bead-based biosensor design that can be applied to such TF-DNA-analyte systems. DNA-functionalized beads enable efficient mixing and spatial separation, while TF-labeled semiconductor quantum dots serve as bright fluorescent indicators of the TF-DNA bound (on bead) and unbound states. The prototype sensor for derivatives of the antibiotic tetracycline exhibits nanomolar sensitivity with visual detection of bead fluorescence. Facile changes to the sensor enable sensor response tuning without necessitating changes to the biomolecular affinities. Assay components self-assemble, and readout by eye or digital camera is possible within 5 minutes of analyte addition, making sensor use facile, rapid, and instrument-free.


Assuntos
Antibacterianos/análise , Técnicas Biossensoriais , Telefone Celular , Corantes Fluorescentes/química , Tetraciclina/análise , Fatores de Transcrição/química , DNA/química , Pontos Quânticos/química , Semicondutores
9.
ACS Appl Mater Interfaces ; 12(39): 43513-43521, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32893612

RESUMO

Immobilization of biosensors in or on a functional material is critical for subsequent device development and translation to wearable technology. Here, we present the development and assessment of an immobilized quantum dot-transcription factor-nucleic acid complex for progesterone detection as a first step toward such device integration. The sensor, composed of a polyhistidine-tagged transcription factor linked to a quantum dot and a fluorophore-modified cognate DNA, is embedded within a hydrogel as an immobilization matrix. The hydrogel is optically transparent, soft, and flexible as well as traps the quantum dot-transcription factor DNA assembly but allows free passage of the analyte, progesterone. Upon progesterone exposure, DNA dissociates from the quantum dot-transcription factor DNA assembly resulting in an attenuated ratiometric fluorescence output via Förster resonance energy transfer. The sensor performs in a dose-dependent manner with a limit of detection of 55 nM. Repeated analyte measurements are similarly successful. Our approach combines a systematically characterized hydrogel as an immobilization matrix and a transcription factor-DNA assembly as a recognition/transduction element, offering a promising framework for future biosensor devices.


Assuntos
DNA/química , Hidrogéis/química , Progesterona/análise , Pontos Quânticos/química , Fatores de Transcrição/química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
10.
Nat Rev Genet ; 21(11): 699-714, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32665585

RESUMO

Despite enormous progress in understanding the fundamentals of bacterial gene regulation, our knowledge remains limited when compared with the number of bacterial genomes and regulatory systems to be discovered. Derived from a small number of initial studies, classic definitions for concepts of gene regulation have evolved as the number of characterized promoters has increased. Together with discoveries made using new technologies, this knowledge has led to revised generalizations and principles. In this Expert Recommendation, we suggest precise, updated definitions that support a logical, consistent conceptual framework of bacterial gene regulation, focusing on transcription initiation. The resulting concepts can be formalized by ontologies for computational modelling, laying the foundation for improved bioinformatics tools, knowledge-based resources and scientific communication. Thus, this work will help researchers construct better predictive models, with different formalisms, that will be useful in engineering, synthetic biology, microbiology and genetics.


Assuntos
Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Iniciação da Transcrição Genética , Óperon , Regiões Promotoras Genéticas , Regulon , Fatores de Transcrição/fisiologia
11.
Adv Healthc Mater ; 9(17): e2000403, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32691962

RESUMO

Immobilization of biosensors on surfaces is a key step toward development of devices for real-world applications. Here the preparation, characterization, and evaluation of a surface-bound transcription factor-nucleic acid complex for analyte detection as an alternative to conventional systems employing aptamers or antibodies are described. The sensor consists of a gold surface modified with thiolated Cy5 fluorophore-labeled DNA and an allosteric transcription factor (TetR) linked to a quantum dot (QD). Upon addition of anhydrotetracycline (aTc)-the analyte-the TetR-QDs release from the surface-bound DNA, resulting in loss of the Förster resonance energy transfer signal. The sensor responds in a dose-dependent manner over the relevant range of 0-200 µm aTc with a limit of detection of 80 nm. The fabrication of the sensor and the subsequent real-time quantitative measurements establish a framework for the design of future surface-bound, affinity-based biosensors using allosteric transcription factors for molecular recognition.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Pontos Quânticos , Transferência Ressonante de Energia de Fluorescência , Fatores de Transcrição
12.
Proc Natl Acad Sci U S A ; 117(25): 14322-14330, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32518115

RESUMO

Phosphorothioate (PT) DNA modifications-in which a nonbonding phosphate oxygen is replaced with sulfur-represent a widespread, horizontally transferred epigenetic system in prokaryotes and have a highly unusual property of occupying only a small fraction of available consensus sequences in a genome. Using Salmonella enterica as a model, we asked a question of fundamental importance: How do the PT-modifying DndA-E proteins select their GPSAAC/GPSTTC targets? Here, we applied innovative analytical, sequencing, and computational tools to discover a novel behavior for DNA-binding proteins: The Dnd proteins are "parked" at the G6mATC Dam methyltransferase consensus sequence instead of the expected GAAC/GTTC motif, with removal of the 6mA permitting extensive PT modification of GATC sites. This shift in modification sites further revealed a surprising constancy in the density of PT modifications across the genome. Computational analysis showed that GAAC, GTTC, and GATC share common features of DNA shape, which suggests that PT epigenetics are regulated in a density-dependent manner partly by DNA shape-driven target selection in the genome.


Assuntos
Bactérias/genética , Bactérias/metabolismo , DNA Bacteriano/metabolismo , Epigênese Genética/fisiologia , Epigenômica , Fosfatos/metabolismo , 2-Aminopurina , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Sequência Consenso , DNA Bacteriano/química , DNA Bacteriano/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Genoma Bacteriano , Salmonella enterica/genética
13.
Nat Commun ; 11(1): 1276, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152281

RESUMO

Bacteria are an enormous and largely untapped reservoir of biosensing proteins. We describe an approach to identify and isolate bacterial allosteric transcription factors (aTFs) that recognize a target analyte and to develop these TFs into biosensor devices. Our approach utilizes a combination of genomic screens and functional assays to identify and isolate biosensing TFs, and a quantum-dot Förster Resonance Energy Transfer (FRET) strategy for transducing analyte recognition into real-time quantitative measurements. We use this approach to identify a progesterone-sensing bacterial aTF and to develop this TF into an optical sensor for progesterone. The sensor detects progesterone in artificial urine with sufficient sensitivity and specificity for clinical use, while being compatible with an inexpensive and portable electronic reader for point-of-care applications. Our results provide proof-of-concept for a paradigm of microbially-derived biosensors adaptable to inexpensive, real-time sensor devices.


Assuntos
Actinobacteria/metabolismo , Técnicas Biossensoriais , Progesterona/metabolismo , Sequência de Bases , Transferência Ressonante de Energia de Fluorescência , Testes Imediatos , Reprodutibilidade dos Testes , Fatores de Transcrição/metabolismo
14.
BMC Biol ; 16(1): 91, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115066

RESUMO

BACKGROUND: Our understanding of the regulation of gene expression has benefited from the availability of high-throughput technologies that interrogate the whole genome for the binding of specific transcription factors and gene expression profiles. In the case of widely used model organisms, such as Escherichia coli K-12, the new knowledge gained from these approaches needs to be integrated with the legacy of accumulated knowledge from genetic and molecular biology experiments conducted in the pre-genomic era in order to attain the deepest level of understanding possible based on the available data. RESULTS: In this paper, we describe an expansion of RegulonDB, the database containing the rich legacy of decades of classic molecular biology experiments supporting what we know about gene regulation and operon organization in E. coli K-12, to include the genome-wide dataset collections from 32 ChIP and 19 gSELEX publications, in addition to around 60 genome-wide expression profiles relevant to the functional significance of these datasets and used in their curation. Three essential features for the integration of this information coming from different methodological approaches are: first, a controlled vocabulary within an ontology for precisely defining growth conditions; second, the criteria to separate elements with enough evidence to consider them involved in gene regulation from isolated transcription factor binding sites without such support; and third, an expanded computational model supporting this knowledge. Altogether, this constitutes the basis for adequately gathering and enabling the comparisons and integration needed to manage and access such wealth of knowledge. CONCLUSIONS: This version 10.0 of RegulonDB is a first step toward what should become the unifying access point for current and future knowledge on gene regulation in E. coli K-12. Furthermore, this model platform and associated methodologies and criteria can be emulated for gathering knowledge on other microbial organisms.


Assuntos
Bases de Dados como Assunto , Escherichia coli K12/genética , Regulação Bacteriana da Expressão Gênica , Transcrição Gênica
15.
Clin Infect Dis ; 64(11): 1494-1501, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28498943

RESUMO

BACKGROUND.: India is home to 25% of all tuberculosis cases and the second highest number of multidrug resistant cases worldwide. However, little is known about the genetic diversity and resistance determinants of Indian Mycobacterium tuberculosis, particularly for the primary lineages found in India, lineages 1 and 3. METHODS.: We whole genome sequenced 223 randomly selected M. tuberculosis strains from 196 patients within the Tiruvallur and Madurai districts of Tamil Nadu in Southern India. Using comparative genomics, we examined genetic diversity, transmission patterns, and evolution of resistance. RESULTS.: Genomic analyses revealed (11) prevalence of strains from lineages 1 and 3, (11) recent transmission of strains among patients from the same treatment centers, (11) emergence of drug resistance within patients over time, (11) resistance gained in an order typical of strains from different lineages and geographies, (11) underperformance of known resistance-conferring mutations to explain phenotypic resistance in Indian strains relative to studies focused on other geographies, and (11) the possibility that resistance arose through mutations not previously implicated in resistance, or through infections with multiple strains that confound genotype-based prediction of resistance. CONCLUSIONS.: In addition to substantially expanding the genomic perspectives of lineages 1 and 3, sequencing and analysis of M. tuberculosis whole genomes from Southern India highlight challenges of infection control and rapid diagnosis of resistant tuberculosis using current technologies. Further studies are needed to fully explore the complement of diversity and resistance determinants within endemic M. tuberculosis populations.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano , Mycobacterium tuberculosis/genética , Tuberculose/diagnóstico , Tuberculose/microbiologia , Adulto , Antituberculosos/farmacologia , Sequência de Bases , Feminino , Variação Genética , Humanos , Índia/epidemiologia , Masculino , Mutação , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/efeitos dos fármacos , Filogenia , Reação em Cadeia da Polimerase , Tuberculose/epidemiologia , Tuberculose/transmissão
16.
Nat Genet ; 49(3): 395-402, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28092681

RESUMO

Multidrug-resistant tuberculosis (MDR-TB), caused by drug-resistant strains of Mycobacterium tuberculosis, is an increasingly serious problem worldwide. Here we examined a data set of whole-genome sequences from 5,310 M. tuberculosis isolates from five continents. Despite the great diversity of these isolates with respect to geographical point of isolation, genetic background and drug resistance, the patterns for the emergence of drug resistance were conserved globally. We have identified harbinger mutations that often precede multidrug resistance. In particular, the katG mutation encoding p.Ser315Thr, which confers resistance to isoniazid, overwhelmingly arose before mutations that conferred rifampicin resistance across all of the lineages, geographical regions and time periods. Therefore, molecular diagnostics that include markers for rifampicin resistance alone will be insufficient to identify pre-MDR strains. Incorporating knowledge of polymorphisms that occur before the emergence of multidrug resistance, particularly katG p.Ser315Thr, into molecular diagnostics should enable targeted treatment of patients with pre-MDR-TB to prevent further development of MDR-TB.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/genética , Antituberculosos/uso terapêutico , Proteínas de Bactérias/genética , Catalase/genética , Genômica/métodos , Humanos , Isoniazida/uso terapêutico , Mutação/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Polimorfismo Genético/genética , Rifampina/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
17.
G3 (Bethesda) ; 7(1): 129-142, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27856696

RESUMO

Light and the circadian clock have a profound effect on the biology of organisms through the regulation of large sets of genes. Toward understanding how light and the circadian clock regulate gene expression, we used genome-wide approaches to identify the direct and indirect targets of the light-responsive and clock-controlled transcription factor ADV-1 in Neurospora crassa A large proportion of ADV-1 targets were found to be light- and/or clock-controlled, and enriched for genes involved in development, metabolism, cell growth, and cell fusion. We show that ADV-1 is necessary for transducing light and/or temporal information to its immediate downstream targets, including controlling rhythms in genes critical to somatic cell fusion. However, while ADV-1 targets are altered in predictable ways in Δadv-1 cells in response to light, this is not always the case for rhythmic target gene expression. These data suggest that a complex regulatory network downstream of ADV-1 functions to generate distinct temporal dynamics of target gene expression relative to the central clock mechanism.


Assuntos
Relógios Circadianos/genética , Redes Reguladoras de Genes/genética , Neurospora crassa/genética , Fatores de Transcrição/genética , Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Luz , Neurospora crassa/fisiologia
18.
PLoS One ; 11(3): e0152145, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27003599

RESUMO

Expression of SigH, one of 12 Mycobacterium tuberculosis alternative sigma factors, is induced by heat, oxidative and nitric oxide stresses. SigH activation has been shown to increase expression of several genes, including genes involved in maintaining redox equilibrium and in protein degradation. However, few of these are known to be directly regulated by SigH. The goal of this project is to comprehensively define the Mycobacterium tuberculosis genes and operons that are directly controlled by SigH in order to gain insight into the role of SigH in regulating M. tuberculosis physiology. We used ChIP-Seq to identify in vivo SigH binding sites throughout the M. tuberculosis genome, followed by quantification of SigH-dependent expression of genes linked to these sites and identification of SigH-regulated promoters. We identified 69 SigH binding sites, which are located both in intergenic regions and within annotated coding sequences in the annotated M. tuberculosis genome. 41 binding sites were linked to genes that showed greater expression following heat stress in a SigH-dependent manner. We identified several genes not previously known to be regulated by SigH, including genes involved in DNA repair, cysteine biosynthesis, translation, and genes of unknown function. Experimental and computational analysis of SigH-regulated promoter sequences within these binding sites identified strong consensus -35 and -10 promoter sequences, but with tolerance for non-consensus bases at specific positions. This comprehensive identification and validation of SigH-regulated genes demonstrates an extended SigH regulon that controls an unexpectedly broad range of stress response functions.


Assuntos
Proteínas de Bactérias/genética , Mycobacterium tuberculosis/genética , Regulon/genética , Fator sigma/genética , Estresse Fisiológico/genética , Transcrição Gênica/genética , Sítios de Ligação/genética , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica/genética , Óperon/genética , Regiões Promotoras Genéticas/genética
19.
Nucleic Acids Res ; 44(1): 134-51, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26358810

RESUMO

Mycobacterium tuberculosis (Mtb) Cmr (Rv1675c) is a CRP/FNR family transcription factor known to be responsive to cAMP levels and during macrophage infections. However, Cmr's DNA binding properties, cellular targets and overall role in tuberculosis (TB) complex bacteria have not been characterized. In this study, we used experimental and computational approaches to characterize Cmr's DNA binding properties and identify a putative regulon. Cmr binds a 16-bp palindromic site that includes four highly conserved nucleotides that are required for DNA binding. A total of 368 binding sites, distributed in clusters among ~200 binding regions throughout the Mycobacterium bovis BCG genome, were identified using ChIP-seq. One of the most enriched Cmr binding sites was located upstream of the cmr promoter, and we demonstrated that expression of cmr is autoregulated. cAMP affected Cmr binding at a subset of DNA loci in vivo and in vitro, including multiple sites adjacent to members of the DosR (DevR) dormancy regulon. Our findings of cooperative binding of Cmr to these DNA regions and the regulation by Cmr of the DosR-regulated virulence gene Rv2623 demonstrate the complexity of Cmr-mediated gene regulation and suggest a role for Cmr in the biology of persistent TB infection.


Assuntos
Proteínas de Bactérias/metabolismo , AMP Cíclico/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas Quinases/metabolismo , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Bovinos , Imunoprecipitação da Cromatina , DNA/metabolismo , Proteínas de Ligação a DNA , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Mycobacterium bovis/genética , Mycobacterium bovis/metabolismo , Matrizes de Pontuação de Posição Específica , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Técnica de Seleção de Aptâmeros , Fatores de Transcrição/química , Fatores de Transcrição/genética
20.
BMC Syst Biol ; 9: 57, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26377923

RESUMO

BACKGROUND: Mycobacterium tuberculosis (MTB) is the causal agent of the disease tuberculosis (TB). Metabolic adaptations are thought to be critical to the survival of MTB during pathogenesis. Computational tools that can be used to study MTB metabolism in silico and prioritize resource-intensive experimental work could significantly accelerate research. RESULTS: We have developed E-Flux-MFC, an enhancement of our original E-Flux method that enables the prediction of changes in the production of external and internal metabolites corresponding to gene expression measurements. We have used this method to simulate the changes in the metabolic state of Mycobacterium tuberculosis (MTB). We have validated the accuracy of E-Flux-MFC for predicting changes in lipids and metabolites during a hypoxia time course using previously published metabolomics and transcriptomics data. We have further validated the accuracy of the method for predicting changes in MTB lipids following the deletion and induction of two well-studied transcription factors (TFs). We have applied the method to predict the metabolic impact of the induction of each of the approximately 180 MTB TFs using a previously generated and publically available expression data set. CONCLUSIONS: E-flux-MFC can be used to study global changes in MTB metabolites from gene expression data associated with environmental and genetic perturbations. The application of this method to a data set of MTB TF perturbations provides a resource for studying the large number of TFs whose functions remain unknown. Most TFs impact metabolites indirectly through the propagation of gene expression changes through the regulatory network rather than through their direct regulons. E-Flux-MFC is also applicable to any organism for which accurate metabolic models are available.


Assuntos
Perfilação da Expressão Gênica , Análise do Fluxo Metabólico/métodos , Modelos Biológicos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA , Deleção de Genes , Metabolismo dos Lipídeos , Oxigênio/metabolismo , Proteínas Quinases/deficiência , Proteínas Quinases/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...