Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 102: 279-291, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35245680

RESUMO

Allergic inflammation during pregnancy increases risk for a diagnosis of neurodevelopmental disorders such as Attention Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) in the offspring. Previously, we found a model of such inflammation, allergy-induced maternal immune activation (MIA), produced symptoms analogous to those associated with neurodevelopmental disorders in rats, including reduced juvenile play behavior, hyperactivity, and cognitive inflexibility. These behaviors were preceded by perinatal changes in microglia colonization and phenotype in multiple relevant brain regions. Given the role that microglia play in synaptic patterning as well as evidence for altered synaptic architecture in neurodevelopmental disorders, we investigated whether allergic MIA altered the dynamics of dendritic spine patterning throughout key regions of the rat forebrain across neurodevelopment. Adult virgin female rats were sensitized to the allergen, ovalbumin, with alum adjuvant, bred, and allergically challenged on gestational day 15. Brain tissue was collected from male and female offspring on postnatal days (P) 5, 15, 30, and 100-120 and processed for Golgi-Cox staining. Mean dendritic spine density was calculated for neurons in brain regions associated with cognition and social behavior, including the medial prefrontal cortex (mPFC), basal ganglia, septum, nucleus accumbens (NAc), and amygdala. Allergic MIA reduced dendritic spine density in the neonatal (P5) and juvenile (P15) mPFC, but these mPFC spine deficits were normalized by P30. Allergic inflammation reduced spine density in the septum of juvenile (P30) rats, with an interaction suggesting increased density in males and reduced density in females. MIA-induced reductions in spine density were also found in the female basal ganglia at P15, as well as in the NAc at P30. Conversely, MIA-induced increases were found in the NAc in adulthood. While amygdala dendritic spine density was generally unaffected throughout development, MIA reduced density in both medial and basolateral subregions in adult offspring. Correlational analyses revealed disruption to amygdala-related networks in the neonatal animals and cortico-striatal related networks in juvenile and adult animals in a sex-specific manner. Collectively, these data suggest that communication within and between these cognitive and social brain regions may be altered dynamically throughout development after prenatal exposure to allergic inflammation. They also provide a basis for future intervention studies targeted at rescuing spine and behavior changes via immunomodulatory treatments.


Assuntos
Transtorno do Espectro Autista , Hipersensibilidade , Efeitos Tardios da Exposição Pré-Natal , Animais , Animais Recém-Nascidos , Encéfalo , Cognição , Espinhas Dendríticas , Feminino , Inflamação , Masculino , Córtex Pré-Frontal , Gravidez , Ratos , Comportamento Social
2.
Brain Behav Immun ; 95: 269-286, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33798637

RESUMO

Maternal systemic inflammation increases risk for neurodevelopmental disorders like autism, ADHD, and schizophrenia in offspring. Notably, these disorders are male-biased. Studies have implicated immune system dysfunction in the etiology of these disorders, and rodent models of maternal immune activation provide useful tools to examine mechanisms of sex-dependent effects on brain development, immunity, and behavior. Here, we employed an allergen-induced model of maternal inflammation in rats to characterize levels of mast cells and microglia in the perinatal period in male and female offspring, as well as social, emotional, and cognitive behaviors throughout the lifespan. Adult female rats were sensitized to ovalbumin (OVA), bred, and challenged intranasally on gestational day 15 of pregnancy with OVA or saline. Allergic inflammation upregulated microglia in the fetal brain, increased mast cell number in the hippocampus on the day of birth, and conferred region-, time- and sex- specific changes in microglia measures. Additionally, offspring of OVA-exposed mothers subsequently exhibited abnormal social behavior, hyperlocomotion, and reduced cognitive flexibility. These data demonstrate the long-term effects of maternal allergic challenge on offspring development and provide a basis for understanding neurodevelopmental disorders linked to maternal systemic inflammation in humans.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Animais , Cognição , Feminino , Sistema Imunitário , Inflamação , Masculino , Ovalbumina , Gravidez , Ratos , Comportamento Social
3.
Sci Rep ; 9(1): 4837, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886382

RESUMO

Sexual differentiation is the early life process by which the brain is prepared for male or female typical behaviors, and is directed by sex chromosomes, hormones and early life experiences. We have recently found that innate immune cells residing in the brain, including microglia and mast cells, are more numerous in the male than female rat brain. Neuroimmune cells are also key participants in the sexual differentiation process, specifically organizing the synaptic development of the preoptic area and leading to male-typical sexual behavior in adulthood. Mast cells are known for their roles in allergic responses, thus in this study we sought to determine if exposure to an allergic response of the pregnant female in utero would alter the sexual differentiation of the preoptic area of offspring and resulting sociosexual behavior in later life. Pregnant rats were sensitized to ovalbumin (OVA), bred, and challenged intranasally with OVA on gestational day 15, which produced robust allergic inflammation, as measured by elevated immunoglobulin E. Offspring of these challenged mother rats were assessed relative to control rats in the early neonatal period for mast cell and microglia activation within their brains, downstream dendritic spine patterning on POA neurons, or grown to adulthood to assess behavior and dendritic spines. In utero exposure to allergic inflammation increased mast cell and microglia activation in the neonatal brain, and led to masculinization of dendritic spine density in the female POA. In adulthood, OVA-exposed females showed an increase in male-typical mounting behavior relative to control females. In contrast, OVA-exposed males showed evidence of dysmasculinization, including reduced microglia activation, reduced neonatal dendritic spine density, decreased male-typical copulatory behavior, and decreased olfactory preference for female-typical cues. Together these studies show that early life allergic events may contribute to natural variations in both male and female sexual behavior, potentially via underlying effects on brain-resident mast cells.


Assuntos
Alérgenos/imunologia , Neuroimunomodulação/fisiologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Diferenciação Sexual/imunologia , Comportamento Sexual Animal/fisiologia , Animais , Técnicas de Observação do Comportamento , Sinais (Psicologia) , Espinhas Dendríticas/imunologia , Espinhas Dendríticas/patologia , Modelos Animais de Doenças , Feminino , Humanos , Imunidade Inata , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Masculino , Mastócitos/imunologia , Exposição Materna/efeitos adversos , Microglia/imunologia , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/psicologia , Área Pré-Óptica/citologia , Área Pré-Óptica/imunologia , Área Pré-Óptica/patologia , Área Pré-Óptica/fisiopatologia , Ratos , Comportamento Social
4.
J Neurosci ; 33(32): 13081-7, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23926261

RESUMO

Life on earth is entrained to a 24 h solar cycle that synchronizes circadian rhythms in physiology and behavior; light is the most potent entraining cue. In mammals, light is detected by (1) rods and cones, which mediate visual function, and (2) intrinsically photosensitive retinal ganglion cells (ipRGCs), which primarily project to the suprachiasmatic nucleus (SCN) in the hypothalamus to regulate circadian rhythms. Recent evidence, however, demonstrates that ipRGCs also project to limbic brain regions, suggesting that, through this pathway, light may have a role in cognition and mood. Therefore, it follows that unnatural exposure to light may have negative consequences for mood or behavior. Modern environmental lighting conditions have led to excessive exposure to light at night (LAN), and particularly to blue wavelength lights. We hypothesized that nocturnal light exposure (i.e., dim LAN) would induce depressive responses and alter neuronal structure in hamsters (Phodopus sungorus). If this effect is mediated by ipRGCs, which have reduced sensitivity to red wavelength light, then we predicted that red LAN would have limited effects on brain and behavior compared with shorter wavelengths. Additionally, red LAN would not induce c-Fos activation in the SCN. Our results demonstrate that exposure to LAN influences behavior and neuronal plasticity and that this effect is likely mediated by ipRGCs. Modern sources of LAN that contain blue wavelengths may be particularly disruptive to the circadian system, potentially contributing to altered mood regulation.


Assuntos
Ritmo Circadiano/fisiologia , Luz/efeitos adversos , Transtornos do Humor/etiologia , Análise de Variância , Animais , Cricetinae , Relação Dose-Resposta à Radiação , Feminino , Privação de Alimentos/fisiologia , Preferências Alimentares/fisiologia , Preferências Alimentares/efeitos da radiação , Análise de Fourier , Regulação da Expressão Gênica/efeitos da radiação , Hipocampo/patologia , Hipocampo/efeitos da radiação , Resposta de Imobilidade Tônica/efeitos da radiação , Transtornos do Humor/patologia , Atividade Motora/fisiologia , Atividade Motora/efeitos da radiação , Phodopus , Proteínas Proto-Oncogênicas c-fos/metabolismo , Comportamento Social , Núcleo Supraquiasmático/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...