Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 81(10): 10D704, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033897

RESUMO

Laser-induced-fluorescence (LIF) is used to measure the density of helium atoms in a helicon plasma source. For a pump wavelength of 587.725 nm (vacuum) and laser injection along the magnetic field, the LIF signal exhibits a signal decrease at the Doppler shifted central wavelength. The drop in signal results from the finite optical depth of the plasma and the magnitude of the decrease is proportional to the density of excited state neutral atoms. Using Langmuir probe measurements of plasma density and electron temperature and a collisional-radiative model, the absolute ground state neutral density is calculated from the optical depth measurements. Optimal plasma performance, i.e., the largest neutral depletion on the axis of the system, is observed for antenna frequencies of 13.0 and 13.5 MHz and magnetic field strengths of 550-600 G.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA