Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(12): 3276-3284, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38489284

RESUMO

The self-diffusivity of cyclohexane and n-octane adsorbed in hierarchical zeolite monoliths has been investigated by using PFG-NMR. In these samples, the intrinsic FAU-X zeolite microporosity combines with a complex macroporous network composed of aggregated zeolite nanocrystals. As temperature is increased, cyclohexane self-diffusivity apparently decreases, reaches a minimum, and then starts increasing upon further increasing the temperature. Such striking, i.e., non-Arrhenius, temperature dependence is not observed for n-octane in the same samples and for cyclohexane adsorbed in purely microporous FAU-X. Through thermodynamic modeling, we show that this anomalous behavior can be rationalized by considering the evolution in the adsorbate populations when changing the temperature. In more detail, we show that the slow and fast diffusing species present in the microporosity and secondary porosity arising from the packing of zeolite nanocrystals vary significantly with a strong impact on the effective diffusivity. Applying the temperature evolution of their relative fractions to a simple two-phase diffusion model helps obtain insights into the physicochemical factors responsible for the complex behavior of effective self-diffusivity in hierarchical zeolites.

2.
Materials (Basel) ; 16(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37959471

RESUMO

Among the different strategies to design highly shape-selective ZSM-5 to obtain para-xylene through toluene alkylation with methanol, the introduction of mesopores to increase reactant and product diffusion has been proposed but barely studied. In this study, we prepared mesoporous ZSM-5 catalysts, named ZSM5-MT(x), from commercial ZSM-5 (Si/Al = 15), using a two-step micelle-templating procedure with octadecyltrimethylammonium bromide as a surfactant in basic medium (x = NaOH/Si). These materials were used as catalysts for the alkylation of toluene by methanol at a low contact time to avoid thermodynamic equilibrium of the xylene isomers. Compared to the parent ZSM-5, the mesoporous ZSM5-MT(x) catalysts did not improve the para-xylene selectivity, revealing that the strategy of increasing diffusion in the catalyst is not a good strategy to follow. However, ZSM5-MT(0.5) showed less deactivation on stream than the parent ZSM-5. Therefore, introducing mesopores to ZSM-5 could be interesting to explore, combined with another strategy of shape selectivity, such as the passivation of the external surface acidity.

3.
Environ Sci Pollut Res Int ; 29(50): 75896-75906, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35665885

RESUMO

In this work, the laccase from Trametes versicolor was immobilized in highly porous silica monoliths (0.6-cm diameter, 0.5-cm length). These monoliths feature a unique homogeneous network of interconnected macropores (20 µm) with mesopores (20 nm) in the skeleton and a high specific surface area (330 m2/g). The enzymatic monoliths were applied to degrade tetracycline (TC) in model aqueous solutions (20 ppm). For this purpose, a tubular flow-through reactor (FTR) configuration with recycling was built. The TC degradation was improved with oxygen saturation, presence of degradation products, and recirculation rate. The TC depletion reaches 50% in the FTR and 90% in a stirred tank reactor (CSTR) using crushed monoliths. These results indicate the importance of maintaining a high co-substrate concentration near active sites. A model coupling mass transfers with a Michaelis-Menten kinetics was applied to simulate the TC degradation in real wastewaters at actual TC concentration (2.8 10-4 ppm). Simulation results show that industrial scale FTR reactor should be suitable to degrade 90% of TC in 5 h at a flow rate of 1 mL/min in a single passage flow configuration. Nevertheless, the process could certainly be further optimized in terms of laccase activity, oxygen supply near active sites, and contact time.


Assuntos
Água Carbonatada , Lacase , Antibacterianos , Lacase/metabolismo , Oxigênio , Dióxido de Silício , Vapor , Tetraciclina , Trametes/metabolismo , Águas Residuárias , Água
4.
Phys Chem Chem Phys ; 22(41): 24051-24058, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33078785

RESUMO

In the frame of the development of solid ionogel electrolytes with enhanced ion transport properties, this paper investigates ionogel systems constituted by ∼80 wt% of ionic liquids (ILs) confined in meso-/macroporous silica monolith materials. The anion-cation coordination for two closely related ILs, either aprotic (AIL) butylmethylpyrrolidinium or protic (PIL) butylpyrrolidinium, both with bis(trifluoromethylsulfonyl)imide (TFSI) anions, with and without lithium cations, is studied in depth. The ILs are confined within silica with well-defined mesoporosities (8 to 16 nm). The effects of this confinement, onto melting points, onto conductivity followed by impedance spectroscopy, and onto lithium-TFSI coordination followed by Raman spectroscopy, are presented. Opposite effects have been observed on the melting temperature: it increased for the AIL (+2 °C) upon confinement, while it decreased for the PIL (-2 °C). With lithium, the confinement led to an increase of the melting temperature (+1 °C) for the PIL and AIL. Regarding ionic conductivities, a relative maximum was observed at 40 °C for a mesopore diameter of 10 nm for the AIL with 0.5 M lithium, while it was not clearly visible for the PIL. These differences are discussed in view of the charge balance at the interface between silanols and ILs: the presence of a PIL, contrary to an AIL, is expected to modify the acidity of the silica. Raman data showed that the coordination number of lithium by TFSI is reduced upon AIL confinement, although this was not observed for PILs. At last, this work highlights the impact of the acidity of a PIL on the chemistry occurring at the interface of the host network within ionogels.

5.
Molecules ; 25(11)2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486439

RESUMO

Binderless pure silica zeolites (zeosils) spheres and hollow spheres with a diameter of 20 µm composed of silicalite-1 nanosheets particles were prepared by pseudomorphic transformation of spherical silica beads using different temperatures (110, 130, and 150 °C) and treatment times (1-5 days) in order to adapt the local dissolution rate of silica to the crystallization rate of silicalite-1 nanosheets allowing to preserve the initial morphology of the silica beads. Fully crystalline beads of 20 µm were obtained at 110 °C for 5 days, whereas hollow spheres similar in size were synthesized at higher temperatures. The crystallization process seems to begin at the outer surface of the amorphous silica beads and spreads with the time in the interior of the beads leading to a dissolution of the inner amorphous part of the beads to create zeosil hollow spheres for the highest treatment temperatures (130 and 150 °C). The dissolution rate of the inner amorphous part of the beads increases by increasing the hydrothermal treatment temperature from 130 to 150 °C. The silicalite-1 beads synthesized at 110 °C for 5 days showed to be promising for rapid molecular decontamination by adsorbing n-hexane in larger amount than the silicalite-1 conventional big crystals in powder forms.


Assuntos
Química/métodos , Nanopartículas/química , Nanoestruturas/química , Dióxido de Silício/química , Zeolitas/química , Adsorção , Poluentes Atmosféricos , Cristalização , Hexanos/química , Temperatura Alta , Cinética , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Pós , Propriedades de Superfície , Tensoativos , Temperatura , Difração de Raios X , Zeolitas/síntese química
6.
Langmuir ; 34(47): 14134-14142, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30379547

RESUMO

A methodology for determining the micropore, mesopore, and external surface areas of hierarchical microporous/mesoporous materials from N2 adsorption isotherms at 77 K is described. For FAU-Y zeolites, the microporous surface area calculated using the Rouquerol criterion and the Brunauer-Emmett-Teller (BET) equation is in accord with the geometrical surface determined by the chord length distribution method. Therefore, BET surface area ( SBET) is the well representative of micropore surface areas of microporous materials and of total surface area of microporous/mesoporous materials. Mechanical mixtures of mesoporous MCM-41 and microporous FAU-Y powders of known surface areas were used to calculate the respective surface areas by weighted linear combination and the results were compared to the values obtained by the t-plot method. The first slope of the t-plot determined the mesopore and external surface areas ( Smes+ext). The linear fit of the first slope is in general in the range 0.01 < p/ p0 < 0.17 and contains the volumes and relative pressures at which all micropores are filled ( p/ p0 > 0.10). Overestimation of Smes+ext values was evident and appropriate corrections were provided. External surface areas ( Sext) were obtained from the second slope of the t-plot, without noting an overestimation of Sext, thus allowing the determination of mesopore surface areas ( Smes) by difference. Micropore surface areas were calculated by subtracting Smes+ext from the total surface area, SBET. As an example, this methodology was applied to characterize a family of hierarchical microporous/mesoporous FAU-Y (FAUmes) synthesized from H-FAU-Y (H-Y, Si/Al = 15) using C18TAB as the surfactant and different NaOH/Si ratios (0.05 < NaOH/Si < 0.25). By increasing the NaOH/Si ratio in the synthesis of FAUmes, it was shown that as the micropore surface area decreases, the mesopore surface area increases, whereas the micropore and mesopore surface area remains constant. This methodology allows accurate characterization of the surface areas of microporous/mesoporous materials.

7.
Langmuir ; 34(38): 11414-11423, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30188140

RESUMO

The texture of mesoporous FAU-Y (FAUmes) prepared by surfactant-templating in basic media is a subject of debate. It is proposed that mesoporous FAU-Y consists of: (1) ordered mesoporous zeolite networks formed by a surfactant-assisted zeolite rearrangement process involving local dissolution and reconstruction of the crystalline framework, and (2) ordered mesoporous amorphous phases as Al-MCM-41, which coexist with zeolite nanodomains obtained by a dissolution-reassembly process. By the present systematic study, performed with FAU-Y (Si/Al = 15) in the presence of octadecyltrimethylammonium bromide and 0 < NaOH/Si ratio < 0.25 at 115 °C for 20 h, we demonstrate that mesoporous FAU zeolites consist, in fact, of a complex family of materials with textural features strongly impacted by the experimental conditions. Two main families have been disclosed: (1) for 0.0625 < NaOH/Si < 0.10, FAUmes are ordered mesoporous materials with zeolite walls, which coexist with zeolite nanodomains (100-200 nm) and (2) for 0.125 < NaOH/Si < 0.25, FAUmes are ordered mesoporous materials with amorphous walls as Al-MCM-41, which coexist with zeolite nanodomains (5-100 nm). The zeolite nanodomains decrease in size with the increase of NaOH/Si ratio. Increasing NaOH/Si ratio leads to an increase of mesopore volume, while the total surface area remains constant, and to a decrease of strong acidity in line with the decrease of micropore volume. The ordered mesoporous materials with zeolite walls feature the highest acidity strength. The ordered mesoporous materials with amorphous walls present additional large pores (50-200 nm), which increase in size and amount with the increase of NaOH/Si ratio. This alkaline treatment of FAU-Y represents a way to obtain ordered mesoporous materials with zeolite walls with high mesopore volume for NaOH/Si = 0.10 and a new way to synthesize mesoporous Al-MCM-41 materials containing extralarge pores (50-200 nm) ideal for optimal diffusion (NaOH/Si = 0.25).

8.
J Phys Chem Lett ; 7(3): 393-8, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26751162

RESUMO

We show that nuclear magnetic relaxation experiments at variable magnetic fields (NMRD) provide noninvasive means for probing the spatial dependence of liquid diffusion close to solid interfaces. These experiments performed on samples of cylindrical and spherical nanopore geometries demonstrate that the average diffusion coefficient parallel to the interface is proportional to the pore radii in different dynamics regimes. A master curve method allows extraction of gradients of diffusion coefficients in proximity of the pore surfaces, indicative of the efficiency of coupling between liquid layers. Due to their selectivity in frequency, NMRD experiments are able to differentiate the different water dynamical events induced by heterogeneous surfaces or composed dynamical processes. This analysis relevant in physical and biological confinements highlights the interplay between the molecular and continuous description of fluid dynamics near interfaces.

9.
Langmuir ; 31(29): 8121-8, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26135844

RESUMO

The surface and textural properties of porous silicon (pSi) control many of its physical properties essential to its performance in key applications such as optoelectronics, energy storage, luminescence, sensing, and drug delivery. Here, we combine experimental and theoretical tools to demonstrate that the surface roughness at the nanometer scale of pSi can be tuned in a controlled fashion using partial thermal oxidation followed by removal of the resulting silicon oxide layer with hydrofluoric acid (HF) solution. Such a process is shown to smooth the pSi surface by means of nitrogen adsorption, electron microscopy, and small-angle X-ray and neutron scattering. Statistical mechanics Monte Carlo simulations, which are consistent with the experimental data, support the interpretation that the pore surface is initially rough and that the oxidation/oxide removal procedure diminishes the surface roughness while increasing the pore diameter. As a specific example considered in this work, the initial roughness ξ ∼ 3.2 nm of pSi pores having a diameter of 7.6 nm can be decreased to 1.0 nm following the simple procedure above. This study allows envisioning the design of pSi samples with optimal surface properties toward a specific process.


Assuntos
Silício/química , Ácido Fluorídrico/química , Método de Monte Carlo , Porosidade , Solubilidade , Propriedades de Superfície
10.
Langmuir ; 30(44): 13266-74, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25232908

RESUMO

The t-plot method is a well-known technique which allows determining the micro- and/or mesoporous volumes and the specific surface area of a sample by comparison with a reference adsorption isotherm of a nonporous material having the same surface chemistry. In this paper, the validity of the t-plot method is discussed in the case of hierarchical porous materials exhibiting both micro- and mesoporosities. Different hierarchical zeolites with MCM-41 type ordered mesoporosity are prepared using pseudomorphic transformation. For comparison, we also consider simple mechanical mixtures of microporous and mesoporous materials. We first show an intrinsic failure of the t-plot method; this method does not describe the fact that, for a given surface chemistry and pressure, the thickness of the film adsorbed in micropores or small mesopores (< 10σ, σ being the diameter of the adsorbate) increases with decreasing the pore size (curvature effect). We further show that such an effect, which arises from the fact that the surface area and, hence, the free energy of the curved gas/liquid interface decreases with increasing the film thickness, is captured using the simple thermodynamical model by Derjaguin. The effect of such a drawback on the ability of the t-plot method to estimate the micro- and mesoporous volumes of hierarchical samples is then discussed, and an abacus is given to correct the underestimated microporous volume by the t-plot method.

11.
Phys Chem Chem Phys ; 16(28): 14699-705, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-24915954

RESUMO

A carbon nitride array (CNA) material has been constructed using a sacrificial diatom template. A regular carbon nitride nanorod array could be replicated from the periodic and regular nanochannel array of the template. The directional charge transport properties and high light harvesting capability of the CNA gives much better performance in splitting water to give hydrogen than its bulk counterpart. Furthermore, by combining with a rhodium complex as a mediator, the nicotinamide adenine dinucleotide (NADH) cofactor of many enzymes could be photocatalytically regenerated by the CNA. The rate of the in situ NADH regeneration is high enough to reverse the biological pathway of the three dehydrogenase enzymes, which then leads to the sustainable conversion of formaldehyde to methanol and also the reduction of carbon dioxide into methanol.


Assuntos
Biocatálise , Nitrilas/metabolismo , Oxirredutases/metabolismo , Processos Fotoquímicos , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Formaldeído/química , Formaldeído/metabolismo , Metanol/química , Metanol/metabolismo , NAD/química , NAD/metabolismo , Nitrilas/química , Nitrilas/efeitos da radiação , Oxirredução , Oxirredutases/química , Tamanho da Partícula , Propriedades de Superfície
12.
Water Sci Technol ; 69(10): 2014-22, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24845315

RESUMO

A rapid and accurate ion chromatography (IC) method (limit of detection as low as 0.06 mg L(-1)) for fosfomycin concentration determination in pharmaceutical industrial wastewater was developed. This method was compared with the performance of high performance liquid chromatography determination (with a high detection limit of 96.0 mg L(-1)) and ultraviolet spectrometry after reacting with alizarin (difficult to perform in colored solutions). The accuracy of the IC method was established in the linear range of 1.0-15.0 mg L(-1) and a linear correlation was found with a correlation coefficient of 0.9998. The recoveries of fosfomycin from industrial pharmaceutical wastewater at spiking concentrations of 2.0, 5.0 and 8.0 mg L(-1) ranged from 81.91 to 94.74%, with a relative standard deviation (RSD) from 1 to 4%. The recoveries of effluent from a sequencing batch reactor treated fosfomycin with activated sludge at spiking concentrations of 5.0, 8.0, 10.0 mg L(-1) ranging from 98.25 to 99.91%, with a RSD from 1 to 2%. The developed IC procedure provided a rapid, reliable and sensitive method for the determination of fosfomycin concentration in industrial pharmaceutical wastewater and samples containing complex components.


Assuntos
Antibacterianos/química , Cromatografia/métodos , Fosfomicina/química , Poluentes Químicos da Água/química , Antraquinonas , Cromatografia Líquida de Alta Pressão , Indústria Farmacêutica , Monitoramento Ambiental , Resíduos Industriais/análise , Eliminação de Resíduos Líquidos
13.
Langmuir ; 29(25): 7864-75, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23718554

RESUMO

Adsorption and transport in hierarchical porous solids with micro- (~1 nm) and mesoporosities (>2 nm) are investigated by molecular simulation. Two models of hierarchical solids are considered: microporous materials in which mesopores are carved out (model A) and mesoporous materials in which microporous nanoparticles are inserted (model B). Adsorption isotherms for model A can be described as a linear combination of the adsorption isotherms for pure mesoporous and microporous solids. In contrast, adsorption in model B departs from adsorption in pure microporous and mesoporous solids; the inserted microporous particles act as defects, which help nucleate the liquid phase within the mesopore and shift capillary condensation toward lower pressures. As far as transport under a pressure gradient is concerned, the flux in hierarchical materials consisting of microporous solids in which mesopores are carved out obeys the Navier-Stokes equation so that Darcy's law is verified within the mesopore. Moreover, the flow in such materials is larger than in a single mesopore, due to the transfer between micropores and mesopores. This nonzero velocity at the mesopore surface implies that transport in such hierarchical materials involves slippage at the mesopore surface, although the adsorbate has a strong affinity for the surface. In contrast to model A, flux in model B is smaller than in a single mesopore, as the nanoparticles act as constrictions that hinder transport. By a subtle effect arising from fast transport in the mesopores, the presence of mesopores increases the number of molecules in the microporosity in hierarchical materials and, hence, decreases the flow in the micropores (due to mass conservation). As a result, we do not observe faster diffusion in the micropores of hierarchical materials upon flow but slower diffusion, which increases the contact time between the adsorbate and the surface of the microporosity.

15.
Chem Soc Rev ; 42(9): 4141-71, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23348418

RESUMO

This review presents the state of the art of molecular simulation and theory of adsorption, intrusion and freezing in porous silica. Both silica pores of a simple geometry and disordered porous silicas which exhibit morphological and topological disorders are considered. We provide a brief description of the numerical models of porous silicas available in the literature and present the most common molecular simulation and theoretical methods. Adsorption in regular and irregular pores is discussed in the light of classical theories of adsorption and capillary condensation in pores. We also present the different evaporation mechanisms for disordered systems: pore blocking and cavitation. The criticality of fluids confined in pores, which is still the matter of debate, is then discussed. We review theoretical results for intrusion/extrusion and freezing in silica pores and discuss the validity of classical approaches such as the Washburn-Laplace equation and Gibbs-Thomson equation to describe the thermodynamics of intrusion and in-pore freezing. The validity of the most widely used characterization techniques is then discussed. We report some concluding remarks and suggest directions for future work.


Assuntos
Congelamento , Nanoestruturas/química , Nanotecnologia , Dióxido de Silício/química , Adsorção , Simulação de Dinâmica Molecular , Porosidade , Dióxido de Silício/síntese química , Propriedades de Superfície
16.
Dalton Trans ; 42(5): 1378-84, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23051700

RESUMO

Well-dispersed Pd nanoparticles have been synthesized inside the mesoporosity of a silica monolith featuring hierarchical porosity of homogeneous interconnected macropores (4 microns) and mesopores (11 nm). These monoliths have been implemented as microreactors for selective hydrogenation reactions. Conversion and selectivity can be tuned by adjusting the flow rates of hydrogen and substrates. In the selective hydrogenation of cyclooctadiene, a conversion of 95% and a selectivity of 90% in the monohydrogenated product, constant over a period of 70 h, have been reached. These figures correspond to a productivity of 4.2 mmol s(-1) g(-1)(MonoSil) (or 0.32 mol s(-1) g(-1)(Pd)). In the stereoselective hydrogenation of 3-hexyn-1-ol a constant conversion of 85% was observed, with however moderate selectivity into the cis isomer, over a test period of 7 h. These results open the route to the synthesis of important chemicals and intermediates via safe and green processes.

17.
Chem Soc Rev ; 42(9): 3821-32, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23250616

RESUMO

Antimatter is barely known by the chemist community and this article has the vocation to explain how antimatter, in particular antihydrogen, can be obtained, as well as to show how mesoporous materials could be used as a further improvement for the production of antimatter at very low temperatures (below 1 K). The first experiments with mesoporous materials highlighted in this review show very promising and exciting results. Mesoporous materials such as mesoporous silicon, mesoporous material films, pellets of MCM-41 and silica aerogel show remarkable features for antihydrogen formation. Yet, the characteristics for the best future mesoporous materials (e.g. pore sizes, pore connectivity, shape, surface chemistry) remain to be clearly identified. For now among the best candidates are pellets of MCM-41 and aerogel with pore sizes between 10 and 30 nm, possessing hydrophobic patches on their surface to avoid ice formation at low temperature. From a fundamental standpoint, antimatter experiments could help to shed light on open issues, such as the apparent asymmetry between matter and antimatter in our universe and the gravitational behaviour of antimatter. To this purpose, basic studies on antimatter are necessary and a convenient production of antimatter is required. It is exactly where mesoporous materials could be very useful.


Assuntos
Hidrogênio/química , Tamanho da Partícula , Porosidade , Dióxido de Silício/química , Propriedades de Superfície , Temperatura
18.
Proc Natl Acad Sci U S A ; 109(48): 19557-62, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23144219

RESUMO

We study the slow dynamics of water evaporation out of hydrophobic cavities by using model porous silica materials grafted with octylsilanes. The cylindrical pores are monodisperse, with a radius in the range of 1-2 nm. Liquid water penetrates in the nanopores at high pressure and empties the pores when the pressure is lowered. The drying pressure exhibits a logarithmic growth as a function of the driving rate over more than three decades, showing the thermally activated nucleation of vapor bubbles. We find that the slow dynamics and the critical volume of the vapor nucleus are quantitatively described by the classical theory of capillarity without adjustable parameter. However, classical capillarity utterly overestimates the critical bubble energy. We discuss the possible influence of surface heterogeneities, long-range interactions, and high-curvature effects, and we show that a classical theory can describe vapor nucleation provided that a negative line tension is taken into account. The drying pressure then provides a determination of this line tension with much higher precision than currently available methods. We find consistent values of the order of -30 pN in a variety of hydrophobic materials.

19.
Rev Sci Instrum ; 83(10): 105105, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126802

RESUMO

Lyophobic heterogeneous systems (LHS) are made of mesoporous materials immersed in a non-wetting liquid. One application of LHS is the nonlinear damping of high frequency vibrations. The behaviour of LHS is characterized by P - ΔV cycles, where P is the pressure applied to the system, and ΔV its volume change due to the intrusion of the liquid into the pores of the material, or its extrusion out of the pores. Very few dynamic studies of LHS have been performed until now. We describe here a new apparatus that allows us to carry out dynamic intrusion/extrusion cycles with various liquid/porous material systems, controlling the temperature from ambient to 120 °C and the frequency from 0.01 to 20 Hz. We show that for two LHS: water/MTS and Galinstan/CPG, the energy dissipated during one cycle depends very weakly on the cycle frequency, in strong contrast to conventional dampers.

20.
Angew Chem Int Ed Engl ; 51(43): 10712-23, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-22996726

RESUMO

Selective catalysts for sustainable oxidation of alkanes are highly demanded because of the abundance of these molecules in the environment, the possibility to transform them into higher-value compounds, such as chemicals or synthetic fuels, and the fact that, kinetically speaking, this is a difficult reaction. Numerous chemical and biological catalysts have been developed in the lasts decades for this purpose, rendering the overview over this field of chemistry difficult. After giving a definition of the ideal catalyst for alkane oxyfunctionalization, this review aims to present the catalysts available today that are closest to ideal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...