Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 528: 12-25, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37536611

RESUMO

We employed the whole-cell patch-clamp method and ChAT-Cre mice to study the electrophysiological attributes of cholinergic neurons in the external globus pallidus. Most neurons were inactive, although approximately 20% displayed spontaneous firing, including burst firing. The resting membrane potential, the whole neuron input resistance, the membrane time constant and the total neuron membrane capacitance were also characterized. The current-voltage relationship showed time-independent inward rectification without a "sag". Firing induced by current injections had a brief initial fast adaptation followed by tonic firing with minimal accommodation. Intensity-frequency plots exhibited maximal average firing rates of about 10 Hz. These traits are similar to those of some cholinergic neurons in the basal forebrain. Also, we examined their dopamine sensitivity by acutely blocking dopamine receptors. This action demonstrated that the membrane potential, excitability, and firing pattern of pallidal cholinergic neurons rely on the constitutive activity of dopamine receptors, primarily D2-class receptors. The blockade of these receptors induced a resting membrane potential hyperpolarization, a decrease in firing for the same stimulus, the disappearance of fast adaptation, and the emergence of a depolarization block. This shift in physiological characteristics was evident even when the hyperpolarization was corrected with D.C. current. Neither the currents that generate the action potentials nor those from synaptic inputs were responsible. Instead, our findings suggest, that subthreshold slow ion currents, that require further investigation, are the target of this novel dopaminergic signaling.


Assuntos
Dopamina , Globo Pálido , Camundongos , Animais , Dopamina/fisiologia , Potenciais de Ação/fisiologia , Neurônios Colinérgicos , Receptores Dopaminérgicos , Colinérgicos
2.
ASN Neuro ; 14: 17590914221102075, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36050845

RESUMO

SUMMARY STATEMENT: A2A receptor required previous D2 receptor activation to modulate Ca2+ currents. Istradefylline decreases pramipexole modulation on Ca2+ currents. Istradefylline reduces A2A + neurons activity in striatial microcircuit, but pramipexole failed to further reduce neuronal activity.


Assuntos
Dopamina , Transtornos Parkinsonianos , Adenosina , Animais , Transtornos Parkinsonianos/tratamento farmacológico , Pramipexol , Receptores de Dopamina D2/fisiologia , Roedores
3.
Front Synaptic Neurosci ; 14: 945816, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147730

RESUMO

Parkinson's disease is a neurodegenerative ailment generated by the loss of dopamine in the basal ganglia, mainly in the striatum. The disease courses with increased striatal levels of acetylcholine, disrupting the balance among these modulatory transmitters. These modifications disturb the excitatory and inhibitory balance in the striatal circuitry, as reflected in the activity of projection striatal neurons. In addition, changes in the firing pattern of striatal tonically active interneurons during the disease, including cholinergic interneurons (CINs), are being searched. Dopamine-depleted striatal circuits exhibit pathological hyperactivity as compared to controls. One aim of this study was to show how striatal CINs contribute to this hyperactivity. A second aim was to show the contribution of extrinsic synaptic inputs to striatal CINs hyperactivity. Electrophysiological and calcium imaging recordings in Cre-mice allowed us to evaluate the activity of dozens of identified CINs with single-cell resolution in ex vivo brain slices. CINs show hyperactivity with bursts and silences in the dopamine-depleted striatum. We confirmed that the intrinsic differences between the activity of control and dopamine-depleted CINs are one source of their hyperactivity. We also show that a great part of this hyperactivity and firing pattern change is a product of extrinsic synaptic inputs, targeting CINs. Both glutamatergic and GABAergic inputs are essential to sustain hyperactivity. In addition, cholinergic transmission through nicotinic receptors also participates, suggesting that the joint activity of CINs drives the phenomenon; since striatal CINs express nicotinic receptors, not expressed in striatal projection neurons. Therefore, CINs hyperactivity is the result of changes in intrinsic properties and excitatory and inhibitory inputs, in addition to the modification of local circuitry due to cholinergic nicotinic transmission. We conclude that CINs are the main drivers of the pathological hyperactivity present in the striatum that is depleted of dopamine, and this is, in part, a result of extrinsic synaptic inputs. These results show that CINs may be a main therapeutic target to treat Parkinson's disease by intervening in their synaptic inputs.

4.
Front Syst Neurosci ; 16: 975989, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36741818

RESUMO

A pipeline is proposed here to describe different features to study brain microcircuits on a histological scale using multi-scale analyses, including the uniform manifold approximation and projection (UMAP) dimensional reduction technique and modularity algorithm to identify neuronal ensembles, Runs tests to show significant ensembles activation, graph theory to show trajectories between ensembles, and recurrence analyses to describe how regular or chaotic ensembles dynamics are. The data set includes ex-vivo NMDA-activated striatal tissue in control conditions as well as experimental models of disease states: decorticated, dopamine depleted, and L-DOPA-induced dyskinetic rodent samples. The goal was to separate neuronal ensembles that have correlated activity patterns. The pipeline allows for the demonstration of differences between disease states in a brain slice. First, the ensembles were projected in distinctive locations in the UMAP space. Second, graphs revealed functional connectivity between neurons comprising neuronal ensembles. Third, the Runs test detected significant peaks of coactivity within neuronal ensembles. Fourth, significant peaks of coactivity were used to show activity transitions between ensembles, revealing recurrent temporal sequences between them. Fifth, recurrence analysis shows how deterministic, chaotic, or recurrent these circuits are. We found that all revealed circuits had recurrent activity except for the decorticated circuits, which tended to be divergent and chaotic. The Parkinsonian circuits exhibit fewer transitions, becoming rigid and deterministic, exhibiting a predominant temporal sequence that disrupts transitions found in the controls, thus resembling the clinical signs of rigidity and paucity of movements. Dyskinetic circuits display a higher recurrence rate between neuronal ensembles transitions, paralleling clinical findings: enhancement in involuntary movements. These findings confirm that looking at neuronal circuits at the histological scale, recording dozens of neurons simultaneously, can show clear differences between control and diseased striatal states: "fingerprints" of the disease states. Therefore, the present analysis is coherent with previous ones of striatal disease states, showing that data obtained from the tissue are robust. At the same time, it adds heuristic ways to interpret circuitry activity in different states.

5.
Neuroscience ; 458: 153-165, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33428968

RESUMO

Differences in the intrinsic properties of intralaminar thalamo-striatal neurons such as expressing low-threshold-spikes (LTS) or after hyperpolarizing potentials (AHPs) of different duration have been attributed to different maturation stages. However, two morphological types: "diffuse" and "bushy" have been described. Therefore, we explored whether electrophysiological differences persist in adult mice using whole cell recordings. Some recorded neurons were identified by intracellular labeling with biocytin and double labeling with retrograde or anterograde tracings using Cre-mice. We classified these neurons by their AHPs during spontaneous firing. Neurons with long duration AHPs, with fast and slow components, were mostly found in the parafascicular (Pf) nucleus. Neurons with brief AHPs were mainly found in the central lateral (CL) nucleus. However, neurons with both AHPs were found in both nuclei in different proportions. Firing frequency adaptation differed between these neuron classes: those with prolonged AHPs exhibited firing frequency adaptation with fast and slow time constants whereas those with brief AHPs were slow adapters. Neurons with more prolonged AHPs had significant higher input resistances than neurons with brief AHPs. Both cell classes could fire in two modes: trains of single action potentials at depolarized potentials or high frequency bursts on top of LTS at more hyperpolarized potentials. LTS were probably generated by Cav3 calcium channels since they were blocked by the selective antagonist TTA-P2. About 11% of neurons with brief AHPs and 55% of neurons with prolonged AHPs do not show LTS and bursts, even when potassium currents are blocked.


Assuntos
Corpo Estriado , Neurônios , Potenciais de Ação , Animais , Canais de Cálcio , Camundongos
6.
Eur J Neurosci ; 53(7): 2149-2164, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-31901201

RESUMO

The striatum is the largest entrance to the basal ganglia. Diverse neuron classes make up striatal microcircuit activity, consisting in the sequential activation of neuronal ensembles. How different neuron classes participate in generating ensemble sequences is unknown. In control mus musculus brain slices in vitro, providing excitatory drive generates ensemble sequences. In Parkinsonian microcircuits captured by a highly recurrent ensemble, a cortical stimulus causes a transitory reconfiguration of neuronal groups alleviating Parkinsonism. Alternation between neuronal ensembles needs interconnectivity, in part due to interneurons, preferentially innervated by incoming afferents. One main class of interneuron expresses parvalbumin (PV+ neurons) and mediates feed-forward inhibition. However, its more global actions within the microcircuit are unknown. Using calcium imaging in ex vivo brain slices simultaneously recording dozens of neurons, we aimed to observe the actions of PV+ neurons within the striatal microcircuit. PV+ neurons in active microcircuits are 5%-11% of the active neurons even if, anatomically, they are <1% of the total neuronal population. In resting microcircuits, optogenetic activation of PV+ neurons turns on circuit activity by activating or disinhibiting, more neurons than those actually inhibited, showing that feed-forward inhibition is not their only function. Optostimulation of PV+ neurons in active microcircuits inhibits and activates different neuron sets, resulting in the reconfiguration of neuronal ensembles by changing their functional connections and ensemble membership, showing that neurons may belong to different ensembles at different situations. Our results show that PV+ neurons participate in the mechanisms that generate alternation of neuronal ensembles, therefore provoking ensemble sequences.


Assuntos
Corpo Estriado , Parvalbuminas , Animais , Gânglios da Base/metabolismo , Corpo Estriado/metabolismo , Interneurônios/metabolismo , Camundongos , Neurônios/metabolismo , Parvalbuminas/metabolismo
7.
Neuroscience ; 446: 304-322, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32860933

RESUMO

The mouse motor cortex exhibits spontaneous activity in the form of temporal sequences of neuronal ensembles in vitro without the need of tissue stimulation. These neuronal ensembles are defined as groups of neurons with a strong correlation between its firing patterns, generating what appears to be a predetermined neural conduction mode that needs study. Each ensemble is commonly accompanied by one or more parvalbumin expressing neurons (PV+) or fast spiking interneurons. Many of these interneurons have functional connections between them, helping to form a circuit configuration similar to a small-world network. However, rich club metrics show that most connected neurons are neurons not expressing parvalbumin, mainly pyramidal neurons (PV-) suggesting feed-forward propagation through pyramidal cells. Ensembles with PV+ neurons are connected to these hubs. When ligand-gated fast GABAergic transmission is blocked, temporal sequences of ensembles collapse into a unique synchronous and recurrent ensemble, showing the need of inhibition for coding cortical spontaneous activity. This new ensemble has a duration and electrophysiological characteristics of brief recurrent interictal epileptiform discharges (IEDs) composed by the coactivity of both PV- and PV+ neurons, demonstrating that GABA transmission impedes its occurrence. Synchronous ensembles are clearly divided into two clusters one of them lasting longer and mainly composed by PV+ neurons. Because an ictal-like event was not recorded after several minutes of IEDs recording, it is inferred that an external stimulus and/or fast GABA transmission are necessary for its appearance, making this preparation ideal to study both the neuronal machinery to encode cortical spontaneous activity and its transformation into brief non-ictal epileptiform discharges.


Assuntos
Córtex Motor , Potenciais de Ação , Animais , Interneurônios/metabolismo , Camundongos , Córtex Motor/metabolismo , Neurônios/metabolismo , Parvalbuminas/metabolismo
8.
Neuroreport ; 30(6): 457-462, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30920433

RESUMO

The ionic driving force for the chloride-permeable GABAA receptor is subject to spatial control and distribution of chloride transporters. NKCC1 and KCC2 are mostly expressed in neurons in a specific manner. In the striatum, the localization of these transporters in identified neurons is unknown. In this study, the expression of these transporters was found to be different between projection neurons and interneurons. NKCC1 immunoreactivity was observed in the soma of adult BAC-D1-eGFP+ and D2-eGFP+ striatal projection neurons (SPNs). KCC2 was not expressed in either projection neuron and immunoreactivity to this transporter was observed only in the neuropile. However, NKCC1 and KCC2 co-transporters were not localized in intracellular biocytin-injected dendrites of SPNs of the direct or indirect pathways (D1-SPNs and D2-SPNs). Experiments with PV Cre transgenic mice transfected with Cre-dependent adeno-associated viruses containing tdTomato in the striatum showed a cell-type-specific distribution of KCC2 chloride transporter co-expression associated with PV interneurons. Thus, depolarizing actions of GABA responses in adult projection neurons can be explained by the expression and somatic localization of the NKCC1 transporters. A somato/dendritic distribution of KCC2 expression was observed only in striatal interneurons and corresponds to the hyperpolarizing action of GABA recorded in these cells. This correlates the different roles for GABA actions in striatal neuronal excitability with the expression of specific chloride transporters.


Assuntos
Corpo Estriado/metabolismo , Neurônios/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Simportadores/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Cotransportadores de K e Cl-
9.
Front Neurosci ; 12: 345, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29904337

RESUMO

Recent studies, have shown that insulin increases extrasynaptic GABAA receptor-mediated currents in the hippocampus, causing alterations of neuronal excitability. The prefrontal cortex (PFC) is another brain area which is involved in cognition functions and expresses insulin receptors. Here, we used electrophysiological, molecular, and immunocytochemical techniques to examine the effect of insulin on the extrasynaptic GABAA receptor-mediated tonic currents in brain slices. We found that insulin (20-500 nM) increases GABAA-mediated tonic currents. Our results suggest that insulin promotes the trafficking of extrasynaptic GABAA receptors from the cytoplasm to the cell membrane. Western blot analysis and immunocytochemistry showed that PFC extrasynaptic GABAA receptors contain α-5 and δ subunits. Insulin effect on tonic currents decreased the firing rate and neuronal excitability in layer 5-6 PFC cells. These effects of insulin were dependent on the activation of the PI3K enzyme, a key mediator of the insulin response within the brain. Taken together, these results suggest that insulin modulation of the GABAA-mediated tonic currents can modify the activity of neural circuits within the PFC. These actions could help to explain the alterations of cognitive processes associated with changes in insulin signaling.

10.
Adv Exp Med Biol ; 1015: 41-57, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29080020

RESUMO

We focus on dynamical descriptions of short-term synaptic plasticity. Instead of focusing on the molecular machinery that has been reviewed recently by several authors, we concentrate on the dynamics and functional significance of synaptic plasticity, and review some mathematical models that reproduce different properties of the dynamics of short term synaptic plasticity that have been observed experimentally. The complexity and shortcomings of these models point to the need of simple, yet physiologically meaningful models. We propose a simplified model to be tested in synapses displaying different types of short-term plasticity.


Assuntos
Encéfalo/fisiologia , Modelos Neurológicos , Modelos Teóricos , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Animais , Humanos , Transmissão Sináptica/fisiologia
11.
J Neurosci ; 36(50): 12511-12529, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27974611

RESUMO

Although the release of mesoaccumbal dopamine is certainly involved in rewarding responses, recent studies point to the importance of the interaction between it and glutamate. One important component of this network is the anterior nucleus accumbens shell (aNAcSh), which sends GABAergic projections into the lateral hypothalamus (LH) and receives extensive glutamatergic inputs from, among others, the medial prefrontal cortex (mPFC). The effects of glutamatergic activation of aNAcSh on the ingestion of rewarding stimuli as well as its effect in the LH and mPFC are not well understood. Therefore, we studied behaving mice that express a light-gated channel (ChR2) in glutamatergic fibers in their aNAcSh while recording from neurons in the aNAcSh, or mPFC or LH. In Thy1-ChR2, but not wild-type, mice activation of aNAcSh fibers transiently stopped the mice licking for sucrose or an empty sipper. Stimulation of aNAcSh fibers both activated and inhibited single-unit responses aNAcSh, mPFC, and LH, in a manner that maintains firing rate homeostasis. One population of licking-inhibited pMSNs in the aNAcSh was also activated by optical stimulation, suggesting their relevance in the cessation of feeding. A rewarding aspect of stimulation of glutamatergic inputs was found when the Thy1-ChR2 mice learned to nose-poke to self-stimulate these inputs, indicating that bulky stimulation of these fibers are rewarding in the sense of wanting. Stimulation of excitatory afferents evoked both monosynaptic and polysynaptic responses distributed in the three recorded areas. In summary, we found that activation of glutamatergic aNAcSh fibers is both rewarding and transiently inhibits feeding. SIGNIFICANCE STATEMENT: We have established that the activation of glutamatergic fibers in the anterior nucleus accumbens shell (aNAcSh) transiently stops feeding and yet, because mice self-stimulate, is rewarding in the sense of wanting. Moreover, we have characterized single-unit responses of distributed components of a hedonic network (comprising the aNAcSh, medial prefrontal cortex, and lateral hypothalamus) recruited by activation of glutamatergic aNAcSh afferents that are involved in encoding a positive valence signal important for the wanting of a reward and that transiently stops ongoing consummatory actions, such as licking.


Assuntos
Comportamento Alimentar/fisiologia , Glutamatos/fisiologia , Região Hipotalâmica Lateral/fisiologia , Fibras Nervosas/fisiologia , Núcleo Accumbens/citologia , Núcleo Accumbens/fisiologia , Córtex Pré-Frontal/fisiologia , Recompensa , Animais , Channelrhodopsins , Feminino , Masculino , Camundongos , Neurônios Aferentes/fisiologia , Optogenética , Técnicas de Patch-Clamp , Autoestimulação , Sinapses/fisiologia
12.
Neurobiol Dis ; 91: 347-61, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26951948

RESUMO

A challenge in neuroscience is to integrate the cellular and system levels. For instance, we still do not know how a few dozen neurons organize their activity and relations in a microcircuit or module of histological scale. By using network theory and Ca(2+) imaging with single-neuron resolution we studied the way in which striatal microcircuits of dozens of cells orchestrate their activity. In addition, control and diseased striatal tissues were compared in rats. In the control tissue, functional connectomics revealed small-world, scale-free and hierarchical network properties. These properties were lost during pathological conditions in ways that could be quantitatively analyzed. Decorticated striatal circuits disclosed that corticostriatal interactions depend on privileged connections with a set of highly connected neurons or "hubs". In the 6-OHDA model of Parkinson's disease there was a decrease in hubs number; but the ones that remained were linked to dominant network states. l-DOPA induced dyskinesia provoked a loss in the hierarchical structure of the circuit. All these conditions conferred distinct temporal sequences to circuit activity. Temporal sequences appeared as particular signatures of disease process thus bringing the possibility of a future quantitative pathophysiology at a histological scale.


Assuntos
Antiparkinsonianos/farmacologia , Corpo Estriado/patologia , Discinesia Induzida por Medicamentos/patologia , Rede Nervosa/fisiopatologia , Neurônios/efeitos dos fármacos , Transtornos Parkinsonianos/patologia , Animais , Corpo Estriado/fisiopatologia , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/tratamento farmacológico , Rede Nervosa/patologia , Neuroimagem , Neurônios/patologia , Transtornos Parkinsonianos/tratamento farmacológico , Ratos Wistar
13.
Neural Plast ; 2015: 573543, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26167304

RESUMO

Most neurons in the striatum are projection neurons (SPNs) which make synapses with each other within distances of approximately 100 µm. About 5% of striatal neurons are GABAergic interneurons whose axons expand hundreds of microns. Short-term synaptic plasticity (STSP) between fast-spiking (FS) interneurons and SPNs and between SPNs has been described with electrophysiological and optogenetic techniques. It is difficult to obtain pair recordings from some classes of interneurons and due to limitations of actual techniques, no other types of STSP have been described on SPNs. Diverse STSPs may reflect differences in presynaptic release machineries. Therefore, we focused the present work on answering two questions: Are there different identifiable classes of STSP between GABAergic synapses on SPNs? And, if so, are synapses exhibiting different classes of STSP differentially affected by dopamine depletion? Whole-cell voltage-clamp recordings on SPNs revealed three classes of STSPs: depressing, facilitating, and biphasic (facilitating-depressing), in response to stimulation trains at 20 Hz, in a constant ionic environment. We then used the 6-hydroxydopamine (6-OHDA) rodent model of Parkinson's disease to show that synapses with different STSPs are differentially affected by dopamine depletion. We propose a general model of STSP that fits all the dynamics found in our recordings.


Assuntos
Neurônios GABAérgicos/fisiologia , Neostriado/fisiologia , Plasticidade Neuronal , Sinapses/fisiologia , Animais , Modelos Animais de Doenças , Masculino , Modelos Neurológicos , Neostriado/citologia , Oxidopamina , Transtornos Parkinsonianos/fisiopatologia , Ratos Wistar , Potenciais Sinápticos
14.
Neural Plast ; 2015: 472676, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26113994

RESUMO

Striatal projection neurons (SPNs) process motor and cognitive information. Their activity is affected by Parkinson's disease, in which dopamine concentration is decreased and acetylcholine concentration is increased. Acetylcholine activates muscarinic receptors in SPNs. Its main source is the cholinergic interneuron that responds with a briefer latency than SPNs during a cortical command. Therefore, an important question is whether muscarinic G-protein coupled receptors and their signaling cascades are fast enough to intervene during synaptic responses to regulate synaptic integration and firing. One of the most known voltage dependent channels regulated by muscarinic receptors is the KV7/KCNQ channel. It is not known whether these channels regulate the integration of suprathreshold corticostriatal responses. Here, we study the impact of cholinergic muscarinic modulation on the synaptic response of SPNs by regulating KV7 channels. We found that KV7 channels regulate corticostriatal synaptic integration and that this modulation occurs in the dendritic/spines compartment. In contrast, it is negligible in the somatic compartment. This modulation occurs on sub- and suprathreshold responses and lasts during the whole duration of the responses, hundreds of milliseconds, greatly altering SPNs firing properties. This modulation affected the behavior of the striatal microcircuit.


Assuntos
Potenciais de Ação , Neurônios GABAérgicos/fisiologia , Canais de Potássio KCNQ/fisiologia , Neostriado/fisiologia , Sinapses/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Córtex Cerebral/fisiologia , Neurônios Colinérgicos/fisiologia , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos Transgênicos , Muscarina/farmacologia , Agonistas Muscarínicos/farmacologia , Neostriado/citologia , Neostriado/metabolismo , Peptídeos/farmacologia , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/antagonistas & inibidores , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo
15.
Neuropharmacology ; 89: 232-44, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25290553

RESUMO

Models of basal ganglia (BG) function posit a dynamic balance between two classes of striatal projection neurons (SPNs): direct pathway neurons (dSPNs) that facilitate movements, and indirect pathway neurons (iSPNs) that repress movement execution. Two main modulatory transmitters regulate the output of these neurons: dopamine (DA) and acetylcholine (ACh). dSPNs express D1-type DA, M1-and M4-type ACh receptors, while iSPNs express D2-type DA and M1-type ACh receptors. Actions of M1-, D1-, and D2-receptors have been extensively reported, but we still ignore most actions of muscarinic M4-type receptors. Here, we used whole-cell recordings in acutely dissociated neurons, pharmacological tools such as mamba-toxins, and BAC D(1 or 2)-eGFP transgenic mice to show that activation of M4-type receptors with bath applied muscarine enhances Ca(2+)-currents through CaV1-channels in dSPNs and not in iSPNs. This action increases excitability of dSPNs after both direct current injection and synaptically driven stimulation. The increases in Ca(2+)-current and excitability were blocked specifically by mamba toxin-3, suggesting mediation via M4-type receptors. M4-receptor activation also increased network activity of dSPNs but not of iSPNs as seen with calcium-imaging techniques. Moreover, actions of D1-type and M4-type receptors may add to produce a larger enhancement of excitability of dSPNs or, paradoxically, oppose each other depending on the order of their activation. Possible implications of these findings are discussed.


Assuntos
Corpo Estriado/citologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Receptor Muscarínico M4/metabolismo , Acetilcolina/farmacologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Células Cultivadas , Dopamina/farmacologia , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Transgênicos , Vias Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Nicardipino/farmacologia , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
16.
J Neurophysiol ; 113(3): 796-807, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25392165

RESUMO

The external globus pallidus (GPe) is central for basal ganglia processing. It expresses muscarinic cholinergic receptors and receives cholinergic afferents from the pedunculopontine nuclei (PPN) and other regions. The role of these receptors and afferents is unknown. Muscarinic M1-type receptors are expressed by synapses from striatal projection neurons (SPNs). Because axons from SPNs project to the GPe, one hypothesis is that striatopallidal GABAergic terminals may be modulated by M1 receptors. Alternatively, some M1 receptors may be postsynaptic in some pallidal neurons. Evidence of muscarinic modulation in any of these elements would suggest that cholinergic afferents from the PPN, or other sources, could modulate the function of the GPe. In this study, we show this evidence using striatopallidal slice preparations: after field stimulation in the striatum, the cholinergic muscarinic receptor agonist muscarine significantly reduced the amplitude of inhibitory postsynaptic currents (IPSCs) from synapses that exhibited short-term synaptic facilitation. This inhibition was associated with significant increases in paired-pulse facilitation, and quantal content was proportional to IPSC amplitude. These actions were blocked by atropine, pirenzepine, and mamba toxin-7, suggesting that receptors involved were M1. In addition, we found that some pallidal neurons have functional postsynaptic M1 receptors. Moreover, some evoked IPSCs exhibited short-term depression and a different kind of modulation: they were indirectly modulated by muscarine via the activation of presynaptic cannabinoid CB1 receptors. Thus pallidal synapses presenting distinct forms of short-term plasticity were modulated differently.


Assuntos
Globo Pálido/fisiologia , Potenciais Pós-Sinápticos Inibidores , Receptor Muscarínico M1/metabolismo , Sinapses/metabolismo , Animais , Atropina/farmacologia , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/fisiologia , Globo Pálido/citologia , Peptídeos e Proteínas de Sinalização Intercelular , Muscarina/farmacologia , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Peptídeos/farmacologia , Pirenzepina/farmacologia , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/metabolismo , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/antagonistas & inibidores , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
17.
Front Syst Neurosci ; 7: 78, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223538

RESUMO

THE QUESTION TO SOLVE IN THE PRESENT WORK IS: what is the predominant action induced by the activation of cholinergic-nicotinic receptors (nAChrs) in the striatal network given that nAChrs are expressed by several elements of the circuit: cortical terminals, dopamine terminals, and various striatal GABAergic interneurons. To answer this question some type of multicellular recording has to be used without losing single cell resolution. Here, we used calcium imaging and nicotine. It is known that in the presence of low micromolar N-Methyl-D-aspartate (NMDA), the striatal microcircuit exhibits neuronal activity consisting in the spontaneous synchronization of different neuron pools that interchange their activity following determined sequences. The striatal circuit also exhibits profuse spontaneous activity in pathological states (without NMDA) such as dopamine depletion. However, in this case, most pathological activity is mostly generated by the same neuron pool. Here, we show that both types of activity are inhibited during the application of nicotine. Nicotine actions were blocked by mecamylamine, a non-specific antagonist of nAChrs. Interestingly, inhibitory actions of nicotine were also blocked by the GABAA-receptor antagonist bicuculline, in which case, the actions of nicotine on the circuit became excitatory and facilitated neuronal synchronization. We conclude that the predominant action of nicotine in the striatal microcircuit is indirect, via the activation of networks of inhibitory interneurons. This action inhibits striatal pathological activity in early Parkinsonian animals almost as potently as L-DOPA.

18.
Biomed Res Int ; 2013: 519184, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24151606

RESUMO

Physiological and biochemical experiments in vivo and in vitro have explored striatal receptor signaling and neuronal excitability to posit pathophysiological models of Parkinson's disease. However, when therapeutic approaches, such as dopamine agonists, need to be evaluated, behavioral tests using animal models of Parkinson's disease are employed. To our knowledge, recordings of population neuronal activity in vitro to assess anti-Parkinsonian drugs and the correlation of circuit dynamics with disease state have only recently been attempted. We have shown that Parkinsonian pathological activity of neuronal striatal circuits can be characterized in in vitro cerebral tissue. Here, we show that calcium imaging techniques, capable of recording dozens of neurons simultaneously with single-cell resolution, can be extended to assess the action of therapeutic drugs. We used L-DOPA as a prototypical anti-Parkinsonian drug to show the efficiency of this proposed bioassay. In a rodent model of early Parkinson's disease, Parkinsonian neuronal activity can be returned to control levels by the bath addition of L-DOPA in a reversible way. This result raises the possibility to use calcium imaging techniques to measure, quantitatively, the actions of anti-Parkinsonian drugs over time and to obtain correlations with disease evolution and behavior.


Assuntos
Levodopa/administração & dosagem , Imagem Molecular , Neurônios/ultraestrutura , Doença de Parkinson/patologia , Animais , Cálcio/química , Cálcio/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Corpo Estriado/ultraestrutura , Modelos Animais de Doenças , Humanos , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Doença de Parkinson/diagnóstico , Ratos
19.
J Neurophysiol ; 105(5): 2260-74, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21389298

RESUMO

The loss of dopaminergic neurons in the substantia nigra compacta followed by striatal dopamine depletion is a hallmark of Parkinson's disease. After dopamine depletion, dopaminergic D(2) receptor (D(2)R)-class supersensitivity develops in striatal neurons. The supersensitivity results in an enhanced modulation of Ca(2+) currents by D(2)R-class receptors. However, the relative contribution of D(2)R, D(3)R, and D(4)R types to the supersensitivity, as well as the mechanisms involved, have not been elucidated. In this study, whole cell voltage-clamp recordings were performed to study Ca(2+) current modulation in acutely dissociated striatal neurons obtained from rodents with unilateral 6-hydroxydopamine lesions in the substantia nigra compacta. Selective antagonists for D(2)R, D(3)R, and D(4)R types were used to identify whether the modulation by one of these receptors experiences a selective change after dopaminergic denervation. It was found that D(3)R-mediated modulation was particularly enhanced. Increased modulation targeted Ca(V)2.1 (P/Q) Ca(2+) channels via the depletion of phosphatidylinositol 4,5-bisphosphate, an intracellular signaling cascade hard to detect in control neurons and hypothesized as being amplified by dopamine depletion. An imbalance in the striatal expression of D(3)R and its splice variant, D(3)nf, accompanied enhanced D(3)R activity. Because Ca(V)2.1 Ca(2+) channels mediate synaptic GABA release from the terminals of striatal neurons, reinforcement of their inhibition by D(3)R may explain in part the profound decrease in synaptic strength in the connections among striatal projection neurons observed in the dopamine-depleted striatum.


Assuntos
Canais de Cálcio Tipo N/fisiologia , Corpo Estriado/metabolismo , Dopamina/metabolismo , Fosfoinositídeo Fosfolipase C/deficiência , Receptores de Dopamina D2/biossíntese , Receptores de Dopamina D3/fisiologia , Animais , Masculino , Camundongos , Camundongos Transgênicos , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia , Simpatectomia/métodos , Regulação para Cima/fisiologia
20.
Cell Mol Neurobiol ; 30(5): 743-50, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20140492

RESUMO

Intracellular recordings were obtained from brain slice preparation in neurons of the striatum of the turtle Trachemys scripta elegans, analogous to the mammalian striatum in its topographic organization, synaptic connectivity, cytoarchitecture, and neurochemistry. Here we show that these similarities extend to the electrophysiological properties of its neurons. Biocytin staining revealed that 85% of the recorded neurons were medium spiny neurons while 15% were aspiny neurons. Spiny neurons of the turtle resembled those found in the mammalian and avian striatum and express dopaminergic D(1) and D(2) class receptors. Because the striatum of the turtle receives a dense dopaminergic innervation from tegmental dopaminergic neurons we investigated the postsynaptic actions of selective dopamine receptor agonists in the excitability of spiny neurons. As in mammals and birds, activation of D(1)-receptors enhances, whereas activation of D(2)-receptors decreases the evoked discharge. Apparently, actions of dopamine agonists occur via the modulation of L-type (Ca(V)1) Ca2+-conductances. Strong cellular evidence suggests that the role of dopamine in the modulation of motor networks is preserved along vertebrate evolution.


Assuntos
Corpo Estriado/efeitos dos fármacos , Corpo Estriado/fisiologia , Dopamina/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Tartarugas/fisiologia , Animais , Agonistas de Dopamina/farmacologia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Técnicas In Vitro , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA