Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37241902

RESUMO

A new series of tetrasubstituted pyrrole derivatives (TSPs) was synthesized based on a previously developed hypothesis on their ability to mimic hydrophobic protein motifs. The resulting new TSPs were endowed with a significant toxicity against human epithelial melanoma A375 cells, showing IC50 values ranging from 10 to 27 µM, consistent with the IC50 value of the reference compound nutlin-3a (IC50 = 15 µM). In particular, compound 10a (IC50 = 10 µM) resulted as both the most soluble and active among the previous and present TSPs. The biological investigation evidenced that the anticancer activity is related to the activation of apoptotic cell-death pathways, supporting our rational design based on the ability of TSPs to interfere with PPI involved in the cell cycle regulation of cancer cells and, in particular, the p53 pathway. A reinvestigation of the TSP pharmacophore by using DFT calculations showed that the three aromatic substituents on the pyrrole core are able to mimic the hydrophobic side chains of the hot-spot residues of parallel and antiparallel coiled coil structures suggesting a possible molecular mechanism of action. A structure-activity relationship (SAR) analysis which includes solubility studies allows us to rationalize the role of the different substituents on the pyrrole core.


Assuntos
Antineoplásicos , Melanoma , Humanos , Pirróis/farmacologia , Pirróis/química , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/química , Relação Estrutura-Atividade , Melanoma/tratamento farmacológico , Proliferação de Células , Estrutura Molecular , Apoptose , Linhagem Celular Tumoral
2.
Eur J Med Chem ; 235: 114274, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344902

RESUMO

Autophagy is a lysosome dependent cell survival mechanism and is central to the maintenance of organismal homeostasis in both physiological and pathological situations. Targeting autophagy in cancer therapy attracted considerable attention in the past as stress-induced autophagy has been demonstrated to contribute to both drug resistance and malignant progression and recently interest in this area has re-emerged. Unlocking the therapeutic potential of autophagy modulation could be a valuable strategy for designing innovative tools for cancer treatment. Microtubule-targeting agents (MTAs) are some of the most successful anti-cancer drugs used in the clinic to date. Scaling up our efforts to develop new anti-cancer agents, we rationally designed multifunctional agents 5a-l with improved potency and safety that combine tubulin depolymerising efficacy with autophagic flux inhibitory activity. Through a combination of computational, biological, biochemical, pharmacokinetic-safety, metabolic studies and SAR analyses we identified the hits 5i,k. These MTAs were characterised as potent pro-apoptotic agents and also demonstrated autophagy inhibition efficacy. To measure their efficacy at inhibiting autophagy, we investigated their effects on basal and starvation-mediated autophagic flux by quantifying the expression of LC3II/LC3I and p62 proteins in oral squamous cell carcinoma and human leukaemia through western blotting and by immunofluorescence study of LC3 and LAMP1 in a cervical carcinoma cell line. Analogues 5i and 5k, endowed with pro-apoptotic activity on a range of hematological cancer cells (including ex-vivo chronic lymphocytic leukaemia (CLL) cells) and several solid tumor cell lines, also behaved as late-stage autophagy inhibitors by impairing autophagosome-lysosome fusion.


Assuntos
Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias Bucais , Antineoplásicos/metabolismo , Apoptose , Autofagia , Carcinoma de Células Escamosas/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Microtúbulos , Neoplasias Bucais/tratamento farmacológico
3.
Eur J Med Chem ; 138: 438-457, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28689095

RESUMO

The manuscript deals with the design, synthesis and biological evaluation of novel benzoxazinone-based and indole-based compounds as multifunctional neuroprotective agents. These compounds inhibit human adenosine kinase (hAK) and human glycogen synthase kinase 3 beta (hGSK-3ß) enzymes. Computational analysis based on a molecular docking approach underlined the potential structural requirements for simultaneously targeting both proteins' allosteric sites. In silico hints drove the synthesis of appropriately decorated benzoxazinones and indoles (5a-s, and 6a-c) and biochemical analysis revealed their behavior as allosteric inhibitors of hGSK-3ß. For both our hit 4 and the best compounds of the series (5c,l and 6b) the potential antioxidant profile was assessed in human neuroblastoma cell lines (IMR 32, undifferentiated and neuronal differentiated), by evaluating the protective effect of selected compounds against H2O2 cytotoxicity and reactive oxygen species (ROS) production. Results showed a strong efficacy of the tested compounds, even at the lower doses, in counteracting the induced oxidative stress (50 µM of H2O2) and in preventing ROS formation. In addition, the tested compounds did not show any cytotoxic effect determined by the LDH release, at the concentration range analyzed (from 0.1 to 50 µM). This study allowed the identification of compound 5l, as the first dual hAK/hGSK-3ß inhibitor reported to date. Compound 5l, which behaves as an effective antioxidant, holds promise for the development of new series of potential therapeutic agents for the treatment of neurodegenerative diseases characterized by an innovative pharmacological profile.


Assuntos
Adenosina Quinase/antagonistas & inibidores , Antioxidantes/farmacologia , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Neuroblastoma/metabolismo , Fármacos Neuroprotetores/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Adenosina Quinase/metabolismo , Antioxidantes/síntese química , Antioxidantes/química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Peróxido de Hidrogênio/antagonistas & inibidores , Peróxido de Hidrogênio/farmacologia , Estrutura Molecular , Neuroblastoma/patologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Estresse Oxidativo/efeitos dos fármacos , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...