Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxid Redox Signal ; 29(12): 1125-1146, 2018 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-29357673

RESUMO

AIMS: Previous studies indicate that hippocampal synaptic plasticity and spatial memory processes entail calcium release from intracellular stores mediated by ryanodine receptor (RyR) channels. In particular, RyR-mediated Ca2+ release is central for the dendritic spine remodeling induced by brain-derived neurotrophic factor (BDNF), a neurotrophin that stimulates complex signaling pathways leading to memory-associated protein synthesis and structural plasticity. To examine if upregulation of ryanodine receptor type-2 (RyR2) channels and the spine remodeling induced by BDNF entail reactive oxygen species (ROS) generation, and to test if RyR2 downregulation affects BDNF-induced spine remodeling and spatial memory. RESULTS: Downregulation of RyR2 expression (short hairpin RNA [shRNA]) in primary hippocampal neurons, or inhibition of nitric oxide synthase (NOS) or NADPH oxidase, prevented agonist-mediated RyR-mediated Ca2+ release, whereas BDNF promoted cytoplasmic ROS generation. RyR2 downregulation or inhibitors of N-methyl-d-aspartate (NMDA) receptors, or NOS or of NADPH oxidase type-2 (NOX2) prevented RyR2 upregulation and the spine remodeling induced by BDNF, as did incubation with the antioxidant agent N-acetyl l-cysteine. In addition, intrahippocampal injection of RyR2-directed antisense oligodeoxynucleotides, which caused significant RyR2 downregulation, caused conspicuous defects in a memorized spatial memory task. INNOVATION: The present novel results emphasize the key role of redox-sensitive Ca2+ release mediated by RyR2 channels for hippocampal structural plasticity and spatial memory. CONCLUSION: Based on these combined results, we propose (i) that BDNF-induced RyR2-mediated Ca2+ release and ROS generation via NOS/NOX2 are strictly required for the dendritic spine remodeling and the RyR2 upregulation induced by BDNF, and (ii) that RyR2 channel expression is crucial for spatial memory processes. Antioxid. Redox Signal. 29, 1125-1146.


Assuntos
Cálcio/metabolismo , Hipocampo/metabolismo , Plasticidade Neuronal , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Memória Espacial , Animais , Células Cultivadas , Hipocampo/citologia , Oxirredução , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
2.
J Virol ; 78(24): 13829-38, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15564491

RESUMO

In this study, we have analyzed the morphogenesis of the birnavirus infectious pancreatic necrosis virus throughout the infective cycle in CHSE-214 cells by using a native agarose electrophoresis system. Two types of viral particles (designated A and B) were identified, isolated, and characterized both molecularly and biologically. Together, our results are consistent with a model of morphogenesis in which the genomic double-stranded RNA is immediately assembled, after synthesis, into a large (66-nm diameter) and uninfectious particle A, where the capsid is composed of both mature and immature viral polypeptides. Upon maturation, particles A yield particles B through the proteolytic cleavage of most of the remaining viral precursors within the capsid, the compaction of the particle (60-nm diameter), and the acquisition of infectivity. These studies will provide the foundation for further analyses of birnavirus particle assembly and RNA replication.


Assuntos
Genoma Viral , Vírus da Necrose Pancreática Infecciosa/crescimento & desenvolvimento , Vírus da Necrose Pancreática Infecciosa/patogenicidade , RNA Viral/metabolismo , Vírion/metabolismo , Montagem de Vírus , Animais , Células Cultivadas , Vírus da Necrose Pancreática Infecciosa/metabolismo , Morfogênese , RNA de Cadeia Dupla/metabolismo , Salmão/virologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA