Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2130, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503739

RESUMO

The Epidermal Growth Factor Receptor (EGFR) is frequently found to be mutated in non-small cell lung cancer. Oncogenic EGFR has been successfully targeted by tyrosine kinase inhibitors, but acquired drug resistance eventually overcomes the efficacy of these treatments. Attempts to surmount this therapeutic challenge are hindered by a poor understanding of how and why cancer mutations specifically amplify ligand-independent EGFR auto-phosphorylation signals to enhance cell survival and how this amplification is related to ligand-dependent cell proliferation. Here we show that drug-resistant EGFR mutations manipulate the assembly of ligand-free, kinase-active oligomers to promote and stabilize the assembly of oligomer-obligate active dimer sub-units and circumvent the need for ligand binding. We reveal the structure and assembly mechanisms of these ligand-free, kinase-active oligomers, uncovering oncogenic functions for hitherto orphan transmembrane and kinase interfaces, and for the ectodomain tethered conformation of EGFR. Importantly, we find that the active dimer sub-units within ligand-free oligomers are the high affinity binding sites competent to bind physiological ligand concentrations and thus drive tumor growth, revealing a link with tumor proliferation. Our findings provide a framework for future drug discovery directed at tackling oncogenic EGFR mutations by disabling oligomer-assembling interactions.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Ligantes , Receptores ErbB/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética
2.
Science ; 381(6663): 1217-1225, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37708276

RESUMO

The mitogen-activated protein kinase (MAPK) p38α is a central component of signaling in inflammation and the immune response and is, therefore, an important drug target. Little is known about the molecular mechanism of its activation by double phosphorylation from MAPK kinases (MAP2Ks), because of the challenge of trapping a transient and dynamic heterokinase complex. We applied a multidisciplinary approach to generate a structural model of p38α in complex with its MAP2K, MKK6, and to understand the activation mechanism. Integrating cryo-electron microscopy with molecular dynamics simulations, hydrogen-deuterium exchange mass spectrometry, and experiments in cells, we demonstrate a dynamic, multistep phosphorylation mechanism, identify catalytically relevant interactions, and show that MAP2K-disordered amino termini determine pathway specificity. Our work captures a fundamental step of cell signaling: a kinase phosphorylating its downstream target kinase.


Assuntos
MAP Quinase Quinase 2 , MAP Quinase Quinase 6 , Proteína Quinase 14 Ativada por Mitógeno , Microscopia Crioeletrônica , Ativação Enzimática , MAP Quinase Quinase 2/química , MAP Quinase Quinase 6/química , Proteína Quinase 14 Ativada por Mitógeno/química , Fosforilação , Especificidade por Substrato , Conformação Proteica
3.
Front Cell Dev Biol ; 11: 1221578, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547474

RESUMO

The sperm-specific channel CatSper (cation channel of sperm) controls the intracellular Ca2+ concentration ([Ca2+]i) and plays an essential role in sperm function. It is mainly activated by the steroid progesterone (P4) but is also promiscuously activated by a wide range of synthetic and physiological compounds. These compounds include diverse steroids whose action on the channel is so far still controversial. To investigate the effect of these compounds on CatSper and sperm function, we developed a high-throughput screening (HTS) assay to measure changes in [Ca2+]i in human sperm and screened 1,280 approved and off-patent drugs including 90 steroids from the Prestwick chemical library. More than half of the steroids tested (53%) induced an increase in [Ca2+]i and reduced the P4-induced Ca2+ influx in human sperm in a dose-dependent manner. Ten of the most potent steroids (activating and P4-inhibiting) were selected for a detailed analysis of their action on CatSper and their ability to act on sperm acrosome reaction (AR) and penetration in viscous media. We found that these steroids show an inhibitory effect on P4 but not on prostaglandin E1-induced CatSper activation, suggesting that they compete for the same binding site as P4. Pregnenolone, dydrogesterone, epiandrosterone, nandrolone, and dehydroepiandrosterone acetate (DHEA) were found to activate CatSper at physiologically relevant concentrations within the nanomolar range. Like P4, most tested steroids did not significantly affect the AR while stanozolol and estropipate slightly increased sperm penetration into viscous medium. Furthermore, using a hybrid approach integrating pharmacophore analysis and statistical modelling, we were able to screen in silico for steroids that can activate the channel and define the physicochemical and structural properties required for a steroid to exhibit agonist activity against CatSper. Overall, our results indicate that not only physiological but also synthetic steroids can modulate the activity of CatSper with varying potency and if bound to CatSper prior to P4, could impair the timely CatSper activation necessary for proper fertilization to occur.

4.
Elife ; 112022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36412088

RESUMO

Non-structural protein 1 (Nsp1) is a main pathogenicity factor of α- and ß-coronaviruses. Nsp1 of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suppresses the host gene expression by sterically blocking 40S host ribosomal subunits and promoting host mRNA degradation. This mechanism leads to the downregulation of the translation-mediated innate immune response in host cells, ultimately mediating the observed immune evasion capabilities of SARS-CoV-2. Here, by combining extensive molecular dynamics simulations, fragment screening and crystallography, we reveal druggable pockets in Nsp1. Structural and computational solvent mapping analyses indicate the partial crypticity of these newly discovered and druggable binding sites. The results of fragment-based screening via X-ray crystallography confirm the druggability of the major pocket of Nsp1. Finally, we show how the targeting of this pocket could disrupt the Nsp1-mRNA complex and open a novel avenue to design new inhibitors for other Nsp1s present in homologous ß-coronaviruses.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Cristalografia , Proteínas não Estruturais Virais/metabolismo , Estabilidade de RNA
5.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269724

RESUMO

Galectins are soluble ß-D-galactoside-binding proteins whose implication in cancer progression and disease outcome makes them prominent targets for therapeutic intervention. In this frame, the development of small inhibitors that block selectively the activity of galectins represents an important strategy for cancer therapy which is, however, still relatively underdeveloped. To this end, we designed here a rationally and efficiently novel diglycosylated compound, characterized by a selenoglycoside bond and the presence of a lipophilic benzyl group at both saccharide residues. The relatively high binding affinity of the new compound to the carbohydrate recognition domain of two galectins, galectin 3 and galectin 9, its good antiproliferative and anti-migration activity towards melanoma cells, as well as its anti-angiogenesis properties, pave the way for its further development as an anticancer agent.


Assuntos
Galectina 3 , Selênio , Carboidratos , Galectina 3/metabolismo , Galectinas/metabolismo , Selênio/farmacologia
6.
Chem Sci ; 12(44): 14700-14710, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34820085

RESUMO

RXRs are nuclear receptors acting as transcription regulators that control key cellular processes in all tissues. All type II nuclear receptors require RXRs for transcriptional activity by forming heterodimeric complexes. Recent whole-exome sequencing studies have identified the RXRα S427F hotspot mutation in 5% of the bladder cancer patients, which is always located at the interface of RXRα with its obligatory dimerization partners. Here, we show that mutation of S427 deregulates transcriptional activity of RXRα dimers, albeit with diverse allosteric mechanisms of action depending on its dimeric partner. S427F acts by allosteric mechanisms, which range from inducing the collapse of the binding pocket to allosteric stabilization of active co-activator competent RXRα states. Unexpectedly, RXR S427F heterodimerization leads to either loss- or gain-of-function complexes, in both cases likely compromising its tumor suppressor activity. This is the first report of a cancer-associated single amino acid substitution that affects the function of the mutant protein variably depending on its dimerization partner.

7.
Sci Rep ; 11(1): 13705, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210996

RESUMO

The D614G mutation in the Spike protein of the SARS-CoV-2 has effectively replaced the early pandemic-causing variant. Using pseudotyped lentivectors, we confirmed that the aspartate replacement by glycine in position 614 is markedly more infectious. Molecular modelling suggests that the G614 mutation facilitates transition towards an open state of the Spike protein. To explain the epidemiological success of D614G, we analysed the evolution of 27,086 high-quality SARS-CoV-2 genome sequences from GISAID. We observed striking coevolution of D614G with the P323L mutation in the viral polymerase. Importantly, the exclusive presence of G614 or L323 did not become epidemiologically relevant. In contrast, the combination of the two mutations gave rise to a viral G/L variant that has all but replaced the initial D/P variant. Our results suggest that the P323L mutation, located in the interface domain of the RNA-dependent RNA polymerase, is a necessary alteration that led to the epidemiological success of the present variant of SARS-CoV-2. However, we did not observe a significant correlation between reported COVID-19 mortality in different countries and the prevalence of the Wuhan versus G/L variant. Nevertheless, when comparing the speed of emergence and the ultimate predominance in individual countries, it is clear that the G/L variant displays major epidemiological supremacy over the original variant.


Assuntos
COVID-19/virologia , RNA-Polimerase RNA-Dependente de Coronavírus/genética , Mutação Puntual , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/epidemiologia , RNA-Polimerase RNA-Dependente de Coronavírus/química , Humanos , Modelos Moleculares , Conformação Proteica , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química
8.
Elife ; 102021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34319231

RESUMO

Mutations within the kinase domain of the epidermal growth factor receptor (EGFR) are common oncogenic driver events in non-small cell lung cancer. Although the activation of EGFR in normal cells is primarily driven by growth-factor-binding-induced dimerization, mutations on different exons of the kinase domain of the receptor have been found to affect the equilibrium between its active and inactive conformations giving rise to growth-factor-independent kinase activation. Using molecular dynamics simulations combined with enhanced sampling techniques, we compare here the conformational landscape of the monomers and homodimers of the wild-type and mutated forms of EGFR ΔELREA and L858R, as well as of two exon 20 insertions, D770-N771insNPG, and A763-Y764insFQEA. The differences in the conformational energy landscapes are consistent with multiple mechanisms of action including the regulation of the hinge motion, the stabilization of the dimeric interface, and local unfolding transitions. Overall, a combination of different effects is caused by the mutations and leads to the observed aberrant signaling.


Assuntos
Mutação , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Neoplasias Pulmonares/genética , Simulação de Dinâmica Molecular , Ligação Proteica
9.
Elife ; 102021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33755013

RESUMO

Understanding allostery in enzymes and tools to identify it offer promising alternative strategies to inhibitor development. Through a combination of equilibrium and nonequilibrium molecular dynamics simulations, we identify allosteric effects and communication pathways in two prototypical class A ß-lactamases, TEM-1 and KPC-2, which are important determinants of antibiotic resistance. The nonequilibrium simulations reveal pathways of communication operating over distances of 30 Å or more. Propagation of the signal occurs through cooperative coupling of loop dynamics. Notably, 50% or more of clinically relevant amino acid substitutions map onto the identified signal transduction pathways. This suggests that clinically important variation may affect, or be driven by, differences in allosteric behavior, providing a mechanism by which amino acid substitutions may affect the relationship between spectrum of activity, catalytic turnover, and potential allosteric behavior in this clinically important enzyme family. Simulations of the type presented here will help in identifying and analyzing such differences.


Antibiotics are crucial drugs for treating and preventing bacterial infections, but some bacteria are evolving ways to resist their effects. This 'antibiotic resistance' threatens lives and livelihoods worldwide. ß-lactam antibiotics, like penicillin, are some of the most commonly used, but some bacteria can now make enzymes called ß-lactamases, which destroy these antibiotics. Dozens of different types of ß-lactamases now exist, each with different properties. Two of the most medically important are TEM-1 and KPC-2. One way to counteract ß-lactamases is with drugs called inhibitors that stop the activity of these enzymes. The approved ß-lactamase inhibitors work by blocking the part of the enzyme that binds and destroys antibiotics, known as the 'active site'. The ß-lactamases have evolved, some of which have the ability to resist the effects of known inhibitors. It is possible that targeting parts of ß-lactamases far from the active site, known as 'allosteric sites', might get around these new bacterial defences. A molecule that binds to an allosteric site might alter the enzyme's shape, or restrict its movement, making it unable to do its job. Galdadas, Qu et al. used simulations to understand how molecules binding at allosteric sites affect enzyme movement. The experiments examined the structures of both TEM-1 and KPC-2, looking at how their shapes changed as molecules were removed from the allosteric site. This revealed how the allosteric sites and the active site are linked together. When molecules were taken out of the allosteric sites, they triggered ripples of shape change that travelled via loop-like structures across the surface of the enzyme. These loops contain over half of the known differences between the different types of ß-lactamases, suggesting mutations here may be responsible for changing which antibiotics each enzyme can destroy. In other words, changes in the 'ripples' may be related to the ability of the enzymes to resist particular antibiotics. Understanding how changes in one part of a ß-lactamase enzyme reach the active site could help in the design of new inhibitors. It might also help to explain how ß-lactamases evolve new properties. Further work could show why different enzymes are more or less active against different antibiotics.


Assuntos
Farmacorresistência Bacteriana , Simulação de Dinâmica Molecular , beta-Lactamases/química , Substituição de Aminoácidos , Conformação Proteica
10.
Chem Sci ; 11(13): 3511-3515, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-34703536

RESUMO

PI3Kα controls several cellular processes and its aberrant signalling is implicated in tumorigenesis. One of its hotspot mutations, E545K, increases PI3Kα lipid kinase activity, but its mode of action is only partially understood. Here, we perform biased and unbiased molecular dynamics simulations of PI3Kα and uncover, for the first time, the free energy landscape of the E545K PI3Kα mutant. We reveal the mechanism by which E545K leads to PI3Kα activation in atomic-level detail, which is considerably more complex than previously thought.

11.
mBio ; 9(6)2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30538183

RESUMO

Pseudomonas aeruginosa produces a class C ß-lactamase (e.g., PDC-3) that robustly hydrolyzes early generation cephalosporins often at the diffusion limit; therefore, bacteria possessing these ß-lactamases are resistant to many ß-lactam antibiotics. In response to this significant clinical threat, ceftolozane, a 3' aminopyrazolium cephalosporin, was developed. Combined with tazobactam, ceftolozane promised to be effective against multidrug-resistant P. aeruginosa Alarmingly, Ω-loop variants of the PDC ß-lactamase (V213A, G216R, E221K, E221G, and Y223H) were identified in ceftolozane/tazobactam-resistant P. aeruginosa clinical isolates. Herein, we demonstrate that the Escherichia coli strain expressing the E221K variant of PDC-3 had the highest minimum inhibitory concentrations (MICs) against a panel of ß-lactam antibiotics, including ceftolozane and ceftazidime, a cephalosporin that differs in structure largely in the R2 side chain. The kcat values of the E221K variant for both substrates were equivalent, whereas the Km for ceftolozane (341 ± 64 µM) was higher than that for ceftazidime (174 ± 20 µM). Timed mass spectrometry, thermal stability, and equilibrium unfolding studies revealed key mechanistic insights. Enhanced sampling molecular dynamics simulations identified conformational changes in the E221K variant Ω-loop, where a hidden pocket adjacent to the catalytic site opens and stabilizes ceftolozane for efficient hydrolysis. Encouragingly, the diazabicyclooctane ß-lactamase inhibitor avibactam restored susceptibility to ceftolozane and ceftazidime in cells producing the E221K variant. In addition, a boronic acid transition state inhibitor, LP-06, lowered the ceftolozane and ceftazidime MICs by 8-fold for the E221K-expressing strain. Understanding these structural changes in evolutionarily selected variants is critical toward designing effective ß-lactam/ß-lactamase inhibitor therapies for P. aeruginosa infections.IMPORTANCE The presence of ß-lactamases (e.g., PDC-3) that have naturally evolved and acquired the ability to break down ß-lactam antibiotics (e.g., ceftazidime and ceftolozane) leads to highly resistant and potentially lethal Pseudomonas aeruginosa infections. We show that wild-type PDC-3 ß-lactamase forms an acyl enzyme complex with ceftazidime, but it cannot accommodate the structurally similar ceftolozane that has a longer R2 side chain with increased basicity. A single amino acid substitution from a glutamate to a lysine at position 221 in PDC-3 (E221K) causes the tyrosine residue at 223 to adopt a new position poised for efficient hydrolysis of both cephalosporins. The importance of the mechanism of action of the E221K variant, in particular, is underscored by its evolutionary recurrences in multiple bacterial species. Understanding the biochemical and molecular basis for resistance is key to designing effective therapies and developing new ß-lactam/ß-lactamase inhibitor combinations.


Assuntos
Antibacterianos/farmacologia , Resistência às Cefalosporinas , Cefalosporinas/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Tazobactam/farmacologia , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Expressão Gênica , Cinética , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura , beta-Lactamases/química , beta-Lactamases/genética
12.
Sci Rep ; 8(1): 15544, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341384

RESUMO

Phosphoinositide 3-kinase alpha (PI3Kα) is involved in fundamental cellular processes including cell proliferation and differentiation and is frequently mutated in human malignancies. One of the most common mutations is E545K, which results in an amino acid substitution of opposite charge. It has been recently proposed that in this oncogenic charge-reversal mutation, the interactions between the protein catalytic and regulatory subunits are abrogated, resulting in loss of regulation and constitutive PI3Kα activity, which can lead to oncogenesis. To assess the mechanism of the PI3Kα E545K activating mutation, extensive Molecular Dynamics simulations were performed to examine conformational changes differing between the wild type (WT) and mutant proteins as they occur in microsecond simulations. In the E545K mutant PI3Kα, we observe a spontaneous detachment of the nSH2 PI3Kα domain (regulatory subunit, p85α) from the helical domain (catalytic subunit, p110α) causing significant loss of communication between the regulatory and catalytic subunits. We examine the allosteric network of the two proteins and show that a cluster of residues around the mutation is important for delivering communication signals between the catalytic and regulatory subunits. Our results demonstrate the dynamical and structural effects induced by the p110α E545K mutation in atomic level detail and indicate a possible mechanism for the loss of regulation that E545K confers on PI3Kα.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Ativação Enzimática , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Classe I de Fosfatidilinositol 3-Quinases/química , Humanos , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Conformação Proteica
13.
Sci Rep ; 8(1): 12916, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-30150677

RESUMO

The rise of multi-drug resistance in bacterial pathogens is one of the grand challenges facing medical science. A major concern is the speed of development of ß-lactamase-mediated resistance in Gram-negative species, thus putting at risk the efficacy of the most recently approved antibiotics and inhibitors, including carbapenems and avibactam, respectively. New strategies to overcome resistance are urgently required, which will ultimately be facilitated by a deeper understanding of the mechanisms that regulate the function of ß-lactamases such as the Klebsiella Pneumoniae carbapenemases (KPCs). Using enhanced sampling computational methods together with site-directed mutagenesis, we report the identification of two "hydrophobic networks" in the KPC-2 enzyme, the integrity of which has been found to be essential for protein stability and corresponding resistance. Present throughout the structure, these networks are responsible for the structural integrity and allosteric signaling. Disruption of the networks leads to a loss of the KPC-2 mediated resistance phenotype, resulting in restored susceptibility to different classes of ß-lactam antibiotics including carbapenems and cephalosporins. The "hydrophobic networks" were found to be highly conserved among class-A ß-lactamases, which implies their suitability for exploitation as a potential target for therapeutic intervention.


Assuntos
Antibacterianos/farmacologia , beta-Lactamases/farmacologia , Compostos Azabicíclicos/farmacologia , Carbapenêmicos/farmacologia , Resistência Microbiana a Medicamentos , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Secundária de Proteína
14.
J Mater Chem B ; 5(18): 3277-3282, 2017 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32264393

RESUMO

A multiscale computational study is reported that investigates the microscopic behavior of the anti-cancer drug gemcitabine (GEM) stored in metal organic frameworks IRMOF-74-III and the functionalized OH-IRMOF-74-III. Accurate Quantum Mechanics calculations indicate that the GEM-MOF interaction energy in both host structures is suitable for drug adsorption and delivery with a slow release. Based on Grand-Canonical Monte Carlo simulations, the predicted maximum loading of GEM is three-fold greater than in lipid-coated mesoporous silica nanoparticles and similar to liposome nanocarriers. Finally, Molecular Dynamics simulations reveal slow diffusion of GEM inside the pores of both hosts, which is crucial for the controlled release of GEM. This work unravels the energetics and dynamics of GEM in MOFs and highlights the ability of the biocompatible (OH)-IRMOF-74-III to be used as a promising nano encapsulator for GEM delivery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...