Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Stimul ; 17(2): 349-361, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38479713

RESUMO

Motor sequence learning gradually quickens reaction time, suggesting that sequence learning alters motor preparation processes. Interestingly, evidence has shown that preparing sequence movements decreases short intracortical inhibition (SICI) in the contralateral motor cortex (M1), but also that sequence learning alters motor preparation processes in both the contralateral and ipsilateral M1s. Therefore, one possibility is that sequence learning alters the SICI decreases occurring during motor preparation in bilateral M1s. To examine this, two novel hypotheses were tested: unilateral sequence preparation would decrease SICI in bilateral M1s, and sequence learning would alter such bilateral SICI responses. Paired-pulse transcranial magnetic stimulation was delivered over the contralateral and ipsilateral M1s to assess SICI in an index finger muscle during the preparation of sequences initiated by either the right index or little finger. In the absence of sequence learning, SICI decreased in both the contralateral and ipsilateral M1s during the preparation of sequences initiated by the right index finger, suggesting that SICI decreases in bilateral M1s during unilateral motor preparation. As sequence learning progressed, SICI decreased in the contralateral M1 whilst it increased in the ipsilateral M1. Moreover, these bilateral SICI responses were observed at the onset of motor preparation, suggesting that sequence learning altered baseline SICI levels rather than the SICI decreases occurring during motor preparation per se. Altogether, these results suggest that SICI responses in bilateral M1s reflect two motor processes: an acute decrease of inhibition during motor preparation, and a cooperative but bidirectional shift of baseline inhibition levels as sequence learning progresses.


Assuntos
Potencial Evocado Motor , Aprendizagem , Córtex Motor , Inibição Neural , Estimulação Magnética Transcraniana , Humanos , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana/métodos , Masculino , Feminino , Adulto , Potencial Evocado Motor/fisiologia , Aprendizagem/fisiologia , Inibição Neural/fisiologia , Eletromiografia , Tempo de Reação/fisiologia , Adulto Jovem , Lateralidade Funcional/fisiologia , Desempenho Psicomotor/fisiologia , Dedos/fisiologia , Movimento/fisiologia
2.
Brain Stimul ; 16(5): 1462-1475, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37777109

RESUMO

Monetary rewards and punishments enhance motor performance and are associated with corticospinal excitability (CSE) increases within the motor cortex (M1) during movement preparation. However, such CSE changes have unclear origins. Based on converging evidence, one possibility is that they stem from increased glutamatergic (GLUTergic) facilitation and/or decreased type A gamma-aminobutyric acid (GABAA)-mediated inhibition within M1. To investigate this, paired-pulse transcranial magnetic stimulation was used over the left M1 to evaluate intracortical facilitation (ICF) and short intracortical inhibition (SICI), indirect assays of GLUTergic activity and GABAA-mediated inhibition, in an index finger muscle during the preparation of sequences initiated by either the right index or little finger. Behaviourally, rewards and punishments enhanced both reaction and movement time. During movement preparation, regardless of rewards or punishments, ICF increased when the index finger initiated sequences, whereas SICI decreased when both the index and little fingers initiated sequences. This finding suggests that GLUTergic activity increases in a finger-specific manner whilst GABAA-mediated inhibition decreases in a finger-unspecific manner during preparation. In parallel, both rewards and punishments non-specifically increased ICF, but only rewards non-specifically decreased SICI as compared to neutral. This suggests that to enhance performance rewards both increase GLUTergic activity and decrease GABAA-mediated inhibition, whereas punishments selectively increase GLUTergic activity. A control experiment revealed that such changes were not observed post-movement as participants processed reward and punishment feedback, indicating they were selective to movement preparation. Collectively, these results map the intracortical excitability changes in M1 by which incentives enhance motor performance.


Assuntos
Potencial Evocado Motor , Punição , Humanos , Potencial Evocado Motor/fisiologia , Dedos , Estimulação Magnética Transcraniana/métodos , Ácido gama-Aminobutírico , Inibição Neural/fisiologia
3.
Sci Rep ; 11(1): 20693, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34667226

RESUMO

Atypical motor learning has been suggested to underpin the development of motoric challenges (e.g., handwriting difficulties) in autism. Bayesian accounts of autistic cognition propose a mechanistic explanation for differences in the learning process in autism. Specifically, that autistic individuals overweight incoming, at the expense of prior, information and are thus less likely to (a) build stable expectations of upcoming events and (b) react to statistically surprising events. Although Bayesian accounts have been suggested to explain differences in learning across a range of domains, to date, such accounts have not been extended to motor learning. 28 autistic and 35 non-autistic controls (IQ > 70) completed a computerised task in which they learned sequences of actions. On occasional "surprising" trials, an expected action had to be replaced with an unexpected action. Sequence learning was indexed as the reaction time difference between blocks which featured a predictable sequence and those that did not. Surprise-related slowing was indexed as the reaction time difference between surprising and unsurprising trials. No differences in sequence-learning or surprise-related slowing were observed between the groups. Bayesian statistics provided anecdotal to moderate evidence to support the conclusion that sequence learning and surprise-related slowing were comparable between the two groups. We conclude that individuals with autism do not show atypicalities in response to surprising events in the context of motor sequence-learning. These data demand careful consideration of the way in which Bayesian accounts of autism can (and cannot) be extended to the domain of motor learning.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Aprendizagem/fisiologia , Atividade Motora/fisiologia , Neurônios Motores/fisiologia , Adolescente , Adulto , Teorema de Bayes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tempo de Reação/fisiologia , Percepção Visual/fisiologia , Adulto Jovem
4.
Cerebellum ; 13(1): 121-38, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23943521

RESUMO

The field of neurostimulation of the cerebellum either with transcranial magnetic stimulation (TMS; single pulse or repetitive (rTMS)) or transcranial direct current stimulation (tDCS; anodal or cathodal) is gaining popularity in the scientific community, in particular because these stimulation techniques are non-invasive and provide novel information on cerebellar functions. There is a consensus amongst the panel of experts that both TMS and tDCS can effectively influence cerebellar functions, not only in the motor domain, with effects on visually guided tracking tasks, motor surround inhibition, motor adaptation and learning, but also for the cognitive and affective operations handled by the cerebro-cerebellar circuits. Verbal working memory, semantic associations and predictive language processing are amongst these operations. Both TMS and tDCS modulate the connectivity between the cerebellum and the primary motor cortex, tuning cerebellar excitability. Cerebellar TMS is an effective and valuable method to evaluate the cerebello-thalamo-cortical loop functions and for the study of the pathophysiology of ataxia. In most circumstances, DCS induces a polarity-dependent site-specific modulation of cerebellar activity. Paired associative stimulation of the cerebello-dentato-thalamo-M1 pathway can induce bidirectional long-term spike-timing-dependent plasticity-like changes of corticospinal excitability. However, the panel of experts considers that several important issues still remain unresolved and require further research. In particular, the role of TMS in promoting cerebellar plasticity is not established. Moreover, the exact positioning of electrode stimulation and the duration of the after effects of tDCS remain unclear. Future studies are required to better define how DCS over particular regions of the cerebellum affects individual cerebellar symptoms, given the topographical organization of cerebellar symptoms. The long-term neural consequences of non-invasive cerebellar modulation are also unclear. Although there is an agreement that the clinical applications in cerebellar disorders are likely numerous, it is emphasized that rigorous large-scale clinical trials are missing. Further studies should be encouraged to better clarify the role of using non-invasive neurostimulation techniques over the cerebellum in motor, cognitive and psychiatric rehabilitation strategies.


Assuntos
Cerebelo/fisiopatologia , Terapia por Estimulação Elétrica , Estimulação Magnética Transcraniana , Animais , Ataxia Cerebelar/fisiopatologia , Ataxia Cerebelar/terapia , Terapia por Estimulação Elétrica/métodos , Humanos , Processos Mentais/fisiologia , Córtex Motor/fisiopatologia , Desempenho Psicomotor/fisiologia , Estimulação Magnética Transcraniana/métodos
5.
Exp Brain Res ; 202(2): 473-84, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20101396

RESUMO

Motor adaptation is impaired by the performance of a secondary task which divides cognitive resources. Additionally, we previously reported slowed adaptation when participants were required to switch from one visual displacement adaptation task to another. Here, we examined whether a dividing secondary task had a similar effect on adaptation as switching between opposing visual displacements. The resource-dividing task involved simultaneously adapting to a step-visual displacement whilst vocally shadowing an auditory stimulus. The switching task required participants to adapt to opposing visual displacements in an alternating manner with the left and right hands. We found that both manipulations had a detrimental effect on adaptation rate. We then integrated these tasks and found the combination caused a greater decrease in adaptation rate than either manipulation in isolation. A second set of experiments showed that adaptation to a gradually imposed visual displacement was influenced in a similar manner to step adaptation. In summary, step adaptation slows the learning rate of gradual adaptation to a large degree, whereas gradual adaptation only slightly slows the learning rate of step adaptation. Therefore, although gradual adaptation involves minimal awareness it can still be disrupted with a cognitively demanding secondary task. We propose that awareness and cognitive resource can be regarded as qualitatively different, but that awareness may be a marker of the amount of resource required. For example, large errors are both noticed and require substantial cognitive resource. However, a lack of awareness does not mean an adaptation task will be resistant to interference from a resource-consuming secondary task.


Assuntos
Adaptação Psicológica , Atividade Motora , Desempenho Psicomotor , Atenção , Percepção Auditiva , Cognição , Feminino , Mãos , Humanos , Masculino , Percepção Visual , Caminhada , Adulto Jovem
6.
Exp Brain Res ; 182(2): 267-73, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17703286

RESUMO

Interlimb transfer of a novel dynamic force has been well documented. It has also been shown that unimanual adaptation to opposing novel environments is possible if they are associated with different workspaces. The main aim of this study was to test if adaptation to opposing velocity dependent viscous forces with one arm could improve the initial performance of the other arm. The study also examined whether this interlimb transfer occurred across an extrinsic, spatial, coordinative system or an intrinsic, joint based, coordinative system. Subjects initially adapted to opposing viscous forces separated by target location. Our measure of performance was the correlation between the speed profiles of each movement within a force condition and an 'average' trajectory within null force conditions. Adaptation to the opposing forces was seen during initial acquisition with a significantly improved coefficient in epoch eight compared to epoch one. We then tested interlimb transfer from the dominant to non-dominant arm (D --> ND) and vice-versa (ND --> D) across either an extrinsic or intrinsic coordinative system. Interlimb transfer was only seen from the dominant to the non-dominant limb across an intrinsic coordinative system. These results support previous studies involving adaptation to a single dynamic force but also indicate that interlimb transfer of multiple opposing states is possible. This suggests that the information available at the level of representation allowing interlimb transfer can be more intricate than a general movement goal or a single perceived directional error.


Assuntos
Adaptação Fisiológica/fisiologia , Extremidades/fisiologia , Lateralidade Funcional/fisiologia , Desempenho Psicomotor/fisiologia , Transferência de Experiência/fisiologia , Adulto , Análise de Variância , Feminino , Humanos , Masculino , Estimulação Luminosa
7.
Exp Brain Res ; 175(4): 676-88, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16835793

RESUMO

It has been suggested that, during tasks in which subjects are exposed to a visual rotation of cursor feedback, alternating bimanual adaptation to opposing rotations is as rapid as unimanual adaptation to a single rotation (Bock et al. in Exp Brain Res 162:513-519, 2005). However, that experiment did not test strict alternation of the limbs but short alternate blocks of trials. We have therefore tested adaptation under alternate left/right hand movement with opposing rotations. It was clear that the left and right hand, within the alternating conditions, learnt to adapt to the opposing displacements at a similar rate suggesting that two adaptive states were formed concurrently. We suggest that the separate limbs are used as contextual cues to switch between the relevant adaptive states. However, we found that during online correction the alternating conditions had a significantly slower rate of adaptation in comparison to the unimanual conditions. Control conditions indicate that the results are not directly due the alternation between limbs or to the constant switching of vision between the two eyes. The negative interference may originate from the requirement to dissociate the visual information of these two alternating displacements to allow online control of the two arms.


Assuntos
Adaptação Fisiológica/fisiologia , Braço/fisiologia , Lateralidade Funcional/fisiologia , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Braço/inervação , Encéfalo/fisiologia , Sinais (Psicologia) , Retroalimentação/fisiologia , Feminino , Humanos , Aprendizagem/fisiologia , Masculino , Testes Neuropsicológicos , Estimulação Luminosa , Percepção Espacial/fisiologia , Campos Visuais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...