Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ter Arkh ; 95(2): 130-139, 2023 Mar 30.
Artigo em Russo | MEDLINE | ID: mdl-37167128

RESUMO

BACKGROUND: Exocrine pancreatic insufficiency (EPI) is a critical host factor in determining the composition of the gut microbiota. Diseases that cause exocrine insufficiency can affect the gut microbiome, which can potentiate disease progression and complications. To date, the relationship of exocrine insufficiency in various pancreatic (PA) pathologies, in chronic pancreatitis (CP), with dysbiotic changes in the intestinal microbiota (IM) has not been reliably studied. The available data are heterogeneous and contradictory, which determines the need for further research. AIM: To conduct a comparative analysis of the taxonomic composition of the intestinal microbiota in patients with CP of various etiologies, without or with the presence of EPI of varying severity, as well as patients with severe EPI with a history of surgical intervention (SI) on the pancreas. MATERIALS AND METHODS: A total of 85 patients were included in the study. Patients were divided into groups according to the severity of EPI: Group 1 (n=16) - patients with CP without EPI; Group 2 (n=11) - patients with CP and mild EPI; Group 3 (n=17) - patients with severe CP and EPI; Group 4 (n=41) - severe EPI in persons with a history of SI on the pancreas. Verification of CP was carried out according to clinical, anamnestic and instrumental data. The degree of EPI was determined by the level of pancreatic elastase-1 (PE-1) feces. Informed consent for the study was obtained for each patient, an anamnesis was collected, physical and laboratory examinations were performed, and a stool sample was obtained. DNA was extracted from each stool sample, the taxonomic composition of BM was determined by sequencing the bacterial 16S rRNA genes, followed by bioinformatic analysis. RESULTS: We followed the changes in the gut microbiota from a group of patients with CP without EPI to a group with severe EPI, in those who underwent SI. At the level of the phylum, the IM of all groups showed the dominance of Firmicutes, with the lowest representation in the severe EPI group, both with SI and CP, and the growth of the Actinobacteria, Verrucomicrobiota and Fusobacteria types. The differential representation of childbirth varied: in patients with severe EPI and CP, compared with mild, statistically significant genera - Akkermansia, Ruminococcus gauvreauii group and Holdemanella; compared with CP without exocrine insufficiency, Prevotella, Ruminococcus gauvreauii group, Peptostreptococcus and Blautia dominated. The CP group with mild EPI was dominated by the following genera: Lachnospiraceae_ND 2004 group, Faecalitalea, Fusobacterium, Catenibacterium, Roseburia, Atopobium, Cloacibacillus, Clostridium innococum group, Ruminococcus torques group. All groups showed a low diversity of taxa with a predominance of opportunistic flora, including participants in oncogenesis. CONCLUSION: The results of the study show that patients with CP of various etiologies and patients with severe EPI who underwent specific intervention on the pancreas have intestinal microbiota dysbiosis, the severity of which is significantly influenced by the degree of EPI.


Assuntos
Insuficiência Pancreática Exócrina , Microbioma Gastrointestinal , Pancreatite Crônica , Humanos , RNA Ribossômico 16S/genética , Insuficiência Pancreática Exócrina/etiologia , Insuficiência Pancreática Exócrina/complicações , Pâncreas , Pancreatite Crônica/complicações , Pancreatite Crônica/diagnóstico , Bactérias , Fezes/microbiologia
2.
Ter Arkh ; 95(12): 1103-1111, 2023 Dec 28.
Artigo em Russo | MEDLINE | ID: mdl-38785049

RESUMO

AIM: To study overall drug resistance genes (resistome) in the human gut microbiome and the changes in these genes during COVID-19 in-hospital therapy. MATERIALS AND METHODS: A single-center retrospective cohort study was conducted. Only cases with laboratory-confirmed SARS-CoV-2 RNA using polymerase chain reaction in oro-/nasopharyngeal swab samples were subject to analysis. The patients with a documented history of or current comorbidities of the hepatobiliary system, malignant neoplasms of any localization, systemic and autoimmune diseases, as well as pregnant women were excluded. Feces were collected from all study subjects for subsequent metagenomic sequencing. The final cohort was divided into two groups depending on the disease severity: mild (group 1) and severe (group 2). Within group 2, five subgroups were formed, depending on the use of antibacterial drugs (ABD): group 2A (receiving ABD), group 2AC (receiving ABD before hospitalization), group 2AD (receiving ABD during hospitalization), group 2AE (receiving ABD during and before hospitalization), group 2B (not receiving ABD). RESULTS: The median number of antibiotic resistance (ABR) genes (cumulative at all time points) was significantly higher in the group of patients treated with ABD: 81.0 (95% CI 73.8-84.5) vs. 51.0 (95% CI 31.1-68.4). In the group of patients treated with ABD (2A), the average number of multidrug resistance genes (efflux systems) was significantly higher than in controls (group 2B): 47.0 (95% CI 46.0-51.2) vs. 21.5 (95% CI 7.0-43.9). Patients with severe coronavirus infection tended to have a higher median number of ABR genes but without statistical significance. Patients in the severe COVID-19 group who did not receive ABD before and during hospitalization also had more resistance genes than the patients in the comparison group. CONCLUSION: This study demonstrated that fewer ABR genes were identified in the group with a milder disease than in the group with a more severe disease associated with more ABR genes, with the following five being the most common: SULI, MSRC, ACRE, EFMA, SAT.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Feminino , Masculino , Estudos Retrospectivos , Pessoa de Meia-Idade , SARS-CoV-2/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Adulto , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Resistência Microbiana a Medicamentos/genética , Índice de Gravidade de Doença , Farmacorresistência Bacteriana/genética , Tratamento Farmacológico da COVID-19
3.
Ter Arkh ; 94(8): 963-972, 2022 Oct 12.
Artigo em Russo | MEDLINE | ID: mdl-36286976

RESUMO

AIM: To identify features of the taxonomic composition of the oropharyngeal microbiota of COVID-19 patients with different disease severity. MATERIALS AND METHODS: The study group included 156 patients hospitalized with confirmed diagnosis of COVID-19 in the clinical medical center of Yevdokimov Moscow State University of Medicine and Dentistry between April and June 2021. There were 77 patients with mild pneumonia according to CT (CT1) and 79 patients with moderate to severe pneumonia (CT2 and CT3). Oropharyngeal swabs were taken when the patient was admitted to the hospital. Total DNA was isolated from the samples, then V3V4 regions of the 16s rRNA gene were amplified, followed by sequencing using Illumina HiSeq 2500 platform. DADA2 algorithm was used to obtain amplicon sequence variants (ASV). RESULTS: When comparing the microbial composition of the oropharynx of the patients with different forms of pneumonia, we have identified ASVs associated with the development of both mild and severe pneumonia outside hospital treatment. Based on the results obtained, ASVs associated with a lower degree of lung damage belong predominantly to the class of Gram-negative Firmicutes (Negativicutes), to various classes of Proteobacteria, as well as to the order Fusobacteria. In turn, ASVs associated with a greater degree of lung damage belong predominantly to Gram-positive classes of Firmicutes Bacilli and Clostridia. While being hospitalized, patients with severe pneumonia demonstrated negative disease dynamics during treatment significantly more often. CONCLUSION: We have observed differences in the taxonomic composition of the oropharyngeal microbiota in patients with different forms of pneumonia developed outside hospital treatment against COVID-19. Such differences might be due to the presumed barrier function of the oropharyngeal microbiota, which reduces the risk of virus titer increase.


Assuntos
COVID-19 , Microbiota , Humanos , RNA Ribossômico 16S/genética , Orofaringe/microbiologia , Pulmão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA