Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(14): eabl9228, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35394842

RESUMO

Biomaterials composed of synthetic cells have the potential to adapt and differentiate guided by physicochemical environmental cues. Inspired by biological systems in development, which extract positional information (PI) from morphogen gradients in the presence of uncertainties, we here investigate how well synthetic cells can determine their position within a multicellular structure. To calculate PI, we created and analyzed a large number of synthetic cellular assemblies composed of emulsion droplets connected via lipid bilayer membranes. These droplets contained cell-free feedback gene circuits that responded to gradients of a genetic inducer acting as a morphogen. PI is found to be limited by gene expression noise and affected by the temporal evolution of the morphogen gradient and the cell-free expression system itself. The generation of PI can be rationalized by computational modeling of the system. We scale our approach using three-dimensional printing and demonstrate morphogen-based differentiation in larger tissue-like assemblies.

2.
Angew Chem Int Ed Engl ; 60(2): 904-909, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-32961006

RESUMO

Some marine plankton called dinoflagellates emit light in response to the movement of surrounding water, resulting in a phenomenon called milky seas or sea sparkle. The underlying concept, a shear-stress induced permeabilisation of biocatalytic reaction compartments, is transferred to polymer-based nanoreactors. Amphiphilic block copolymers that carry nucleobases in their hydrophobic block are self-assembled into polymersomes. The membrane of the vesicles can be transiently switched between an impermeable and a semipermeable state by shear forces occurring in flow or during turbulent mixing of polymersome dispersions. Nucleobase pairs in the hydrophobic leaflet separate when mechanical force is applied, exposing their hydrogen bonding motifs and therefore making the membrane less hydrophobic and more permeable for water soluble compounds. This polarity switch is used to release payload of the polymersomes on demand, and to activate biocatalytic reactions in the interior of the polymersomes.


Assuntos
Dinoflagellida/metabolismo , Polímeros/química , Biocatálise , Dinoflagellida/enzimologia , Fluoresceína/química , Fluoresceína/metabolismo , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Resistência ao Cisalhamento , Espectrofotometria Ultravioleta , Temperatura
3.
J Am Chem Soc ; 140(25): 8027-8036, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29856216

RESUMO

Transient activation of biochemical reactions by visible light and subsequent return to the inactive state in the absence of light is an essential feature of the biochemical processes in photoreceptor cells. To mimic such light-responsiveness with artificial nanosystems, polymersome nanoreactors were developed that can be switched on by visible light and self-revert fast in the dark at room temperature to their inactive state. Donor-acceptor Stenhouse adducts (DASAs), with their ability to isomerize upon irradiation with visible light, were employed to change the permeability of polymersome membranes by switching polarity from a nonpolar triene-enol form to a cyclopentenone with increased polarity. To this end, amphiphilic block copolymers containing poly(pentafluorophenyl methacrylate) in their hydrophobic block were synthesized by reversible addition-fragmentation chain-transfer (RAFT) radical polymerization and functionalized either with a DASA that is based on Meldrum's acid or with a novel fast-switching pyrazolone-based DASA. These polymers were self-assembled into vesicles. Release of hydrophilic payload could be triggered by light and stopped as soon as the light was turned off. The encapsulation of enzymes yielded photoresponsive nanoreactors that catalyzed reactions only if they were irradiated with light. A mixture of polymersome nanoreactors, one that switches in green light, the other switching in red light, permitted specific control of the individual reactions of a reaction cascade in one pot by irradiation with varied wavelengths, thus enabling light-controlled wavelength-selective catalysis. The DASA-based nanoreactors demonstrate the potential of DASAs to switch permeability of membranes and could find application to switch reactions on and off, on demand, e.g., in microfluidics or in drug delivery.


Assuntos
Ciclopentanos/química , Metacrilatos/química , Nanocápsulas/química , Pirazolonas/química , Catálise , Preparações de Ação Retardada/química , Interações Hidrofóbicas e Hidrofílicas , Isomerismo , Luz , Membranas Artificiais , Microquímica , Permeabilidade , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...