Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(47): 44708-44716, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38046315

RESUMO

The present work focuses on the surface coating of VAR technical fibers, consisting of 64% viscose (cellulose), 24% Kevlar, 10% other types of polyamides, and 2% antistatic polymers. Kevlar is an aramid material exhibiting excellent mechanical properties, while cellulose is a natural linear polymer composed of repeating ß-d-glucose units, having several applications in the materials industry. Herein, we synthesized novel, tailor-designed organic molecules possessing functional groups able to anchor on VAR fabrics and cellulose materials, thus altering their properties on demand. To this end, we utilized methyl-α-d-glucopyranose as a model compound, both to optimize the reaction conditions, before applying them to the material and to understand the chemical behavior of the material at the molecular level. The efficient coating of the VAR fabric with the tailor-made compounds was then implemented. Thorough characterization studies using Raman and IR spectroscopies as well as SEM imaging and thermogravimetric analysis were also carried out. The wettability and water repellency and antibacterial properties of the modified VAR fabrics were also investigated in detail. To the best of our knowledge, such an approach has not been previously explored, among other factors regarding the understanding of the anchoring mechanism at the molecular level. The proposed modification protocol holds the potential to improve the properties of various cellulose-based materials beyond VAR fabrics.

2.
Molecules ; 28(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37513342

RESUMO

The surface modification of fabrics composed of Kevlar®, Nomex®, or VAR was extensively investigated. Kevlar® and Nomex® are widely-utilized aramid materials, whereas VAR is a technical fabric comprising 64% viscose, 24% para-aramid (Kevlar®), 10% polyamide, and 2% antistatic fibers. Both aramid materials and cellulose/viscose exhibit exceptional mechanical properties that render them valuable in a wide range of applications. For the herein studied modification of Kevlar®, Nomex®, and VAR, we used small organic molecules 3-allyl-5,5-dimethylhydantoin (ADMH) and 3-(acrylamidopropyl)trimethylammonium chloride (APTAC), which were anchored onto the materials under study via graft polymerization. By doing so, excellent antibacterial properties were induced in the three studied fabrics. Their water repellency was improved in most cases as well. Extensive characterization studies were conducted to probe the properties of the modified materials, employing Raman and FTIR spectroscopies, Scanning Electron Microscopy (SEM), and thermogravimetric analysis (TGA).

3.
Langmuir ; 34(37): 11156-11166, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30145895

RESUMO

Design of novel and more efficient antibacterial agents is a continuous and dynamic process due to the appearance of new pathogenic strains and inherent resistance development to existing antimicrobial treatments. Metallic nanoparticles (NPs) are highly investigated, yet the role of released ions is crucial in the antibacterial activity of the NP-based systems. We developed herein ion-based, metal/graphene hybrid structures comprising surface-bound Ag and Cu mono-ionic and Ag/Cu bi-ionic species on functionalized graphene, without involvement of NPs. The antibacterial performance of the resulting systems was evaluated against Escherichia coli cells using a series of parametrization experiments of varying metal ion types and concentrations and compared with that of the respective NP-based systems. It was found that the bi-ionic Ag/Cu-graphene materials exhibited superior performance compared to that of the mono-ionic analogues owing to the synergistic action of the combination of the two different metal ions on the surface and the enhancing role of the graphene support, whereas all ion-based systems performed superiorly compared to their NP-based counterparts of the same metal type and concentration. In addition, the materials exhibited sustained action, as their activity was maintained after reuse in repeated cycles employing fresh bacteria in each cycle. The systems developed herein may open new prospects toward the development of novel, efficient, and tunable antibacterial agents by properly supporting and configuring metals in ionic form.


Assuntos
Antibacterianos/química , Cátions/química , Cobre/química , Grafite/química , Prata/química , Escherichia coli/efeitos dos fármacos , Grafite/síntese química , Porosidade
4.
J Plant Physiol ; 222: 79-85, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29407552

RESUMO

The circadian clock is crucial for the synchronization of an organism's physiology and metabolism with the geophysical time. In plants, previous work on the common bean (Phaseolus vulgaris) has identified various differing aspects of clock function compared to the widely studied Arabidopsis thaliana clock. However, transformation of legumes for the study of the circadian clock regulatory mechanisms is extremely laborious. In the present work, we describe an easy-to-follow and rapid method of preparing bean leaf protoplasts with high transformation potential and a functional circadian clock. In this system, we show that application of trichostatin A differentially changes the expression levels of several clock genes. More importantly, we investigate the effect of the clock protein PvTOC1 (Phaseolus vulgaris TIMING OF CAB EXPRESSION 1) on the activity of bean circadian promoters. We present new evidence on the function of PvTOC1 as a repressor of the promoter activity of its own gene, mediated by its conserved CCT (CONSTANS, CO-LIKE and TOC1) domain. Using our protoplast system we were able to uncover functions of the bean circadian clock and to identify an additional target of the PvTOC1clock transcription factor, not previously reported.


Assuntos
Relógios Circadianos/genética , Técnicas In Vitro/métodos , Phaseolus/fisiologia , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Phaseolus/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Protoplastos/fisiologia , Fatores de Transcrição/metabolismo
5.
ACS Appl Mater Interfaces ; 8(41): 27498-27510, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27680975

RESUMO

Increased proliferation of antimicrobial resistance and new strains of bacterial pathogens severely impact current health, environmental, and technological developments, demanding design of novel, highly efficient antibacterial agents. Ag, Cu monometallic and Ag/Cu bimetallic nanoparticles (NPs) were in situ grown on the surface of graphene, which was produced by chemical vapor deposition using ferrocene as precursor and further functionalized to introduce oxygen-containing surface groups. The antibacterial performance of the resulting hybrids was evaluated against Escherichia coli cells and compared through a series of parametrization experiments of varying metal type and concentration. It was found that both Ag- and Cu-based monometallic graphene composites significantly suppress bacterial growth, yet the Ag-based ones exhibit higher activity compared to that of their Cu-based counterparts. Compared with well-dispersed colloidal Ag NPs of the same metal concentration, Ag- and Cu-based graphene hybrids display weaker antibacterial activity. However, the bimetallic Ag/CuNP-graphene hybrids exhibit superior performance compared to that of all other materials tested, i.e., both the monometallic graphene structures as well as the colloidal NPs, achieving complete bacterial growth inhibition at all metal concentrations tested. This striking performance is attributed to the synergistic action of the combination of the two different metals that coexist on the surface as well as the enhancing role of the graphene support.

6.
J Microbiol Methods ; 121: 1-4, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26666516

RESUMO

The chlorophyll a fluorescence based antimicrobial susceptibility testing (AST) method presented in a previous work was based on the measurement of Chl a fluorescence of the gram(-) cyanobacterium Synechococcus sp. PCC 7942. Synechococcus sp. PCC 7942 as a gram(-) bacterium is affected by antibacterial agents via mechanisms affecting all gram(-) bacteria, however, as an exclusively phototrophic organism it would also be affected by photosynthesis inhibitory action of an agent that otherwise has no antibacterial properties. In this report, the method is modified by replacing the exclusively phototrophic Synechococcus sp. PCC 7942 with the Synechocystis sp. PCC 6714, capable of both phototrophic and heterotrophic growth in order to add versatility and better reflect the antibacterial effects of surfaces under study towards nonphotosynthetic bacteria.


Assuntos
Anti-Infecciosos/farmacologia , Clorofila/química , Testes de Sensibilidade Microbiana/métodos , Espectrometria de Fluorescência/métodos , Synechococcus/química , Synechococcus/efeitos dos fármacos , Clorofila/análise , Clorofila A , Microbiologia Ambiental , Fluorescência , Fotossíntese/efeitos dos fármacos , Propriedades de Superfície , Synechococcus/crescimento & desenvolvimento , Synechocystis/química , Synechocystis/efeitos dos fármacos , Synechocystis/crescimento & desenvolvimento , Têxteis/microbiologia
7.
J Microbiol Methods ; 112: 49-54, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25771834

RESUMO

Up to now antimicrobial susceptibility testing (AST) methods are indirect and generally involve the manual counting of bacterial colonies following the extraction of microorganisms from the surface under study and their inoculation in a separate procedure. In this work, an in situ, direct and instrumental method for the evaluation and assessment of antibacterial properties of materials and surfaces is proposed. Instead of indirectly determining antibacterial activity using the typical gram(-) test organisms with the subsequent manual colony count or inhibition zone measurement, the proposed procedure, employs photosynthetic gram(-) cyanobacteria deposited directly onto the surface under study and assesses cell proliferation and viability by a quick, accurate and reproducible instrumental chlorophyll fluorescence spectrophotometric technique. In contrast with existing methods of determination of antibacterial properties, it produces high resolution and quantitative results and is so versatile that it could be used to evaluate the antibacterial properties of any compound (organic, inorganic, natural or man-made) under any experimental conditions, depending on the targeted application.


Assuntos
Clorofila/análise , Cianobactérias/efeitos dos fármacos , Microbiologia Ambiental , Fluorometria/métodos , Testes de Sensibilidade Microbiana/métodos , Propriedades de Superfície , Clorofila A , Cianobactérias/química
8.
Plant Sci ; 184: 141-7, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22284718

RESUMO

Circadian clocks regulate the adaptation of the organisms' physiology to the environmental light-dark cycles. Photic resetting of the clock differs among plant species. In Arabidopsis thaliana, morning-phased genes are not responsive to light signals at night, while in Phaseolus vulgaris, morning-phased genes are responsive to light at trough phases that are reached during the night. In order to explore this further, in this work we investigated the light-responsiveness at night of two P. vulgaris evening phased genes, the orthologs of TOC1 and ELF4. Our results demonstrate that the oscillation of their expression is symphasic under all applied photic conditions. Thus, under photoperiod peak phases are obtained in the evening (LD 12:12) or early at night (LD 6:18). Light application at the beginning of the night under LD 6:18 results in a phase shift of the PvTOC1 and PvELF4 oscillation, while at the end of the night the phase remains unchanged. Moreover, when light is applied at the narrow time window of the peak phase, a significant transient increase in the expression of both PvTOC1 and PvELF4 is caused. These results indicate that, depending on the plant species, evening-phased genes may also participate in the resetting of the circadian clock machinery by light.


Assuntos
Ritmo Circadiano/efeitos da radiação , Luz , Phaseolus/efeitos da radiação , Proteínas de Plantas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Ritmo Circadiano/genética , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Dados de Sequência Molecular , Phaseolus/genética , Folhas de Planta/genética , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/química , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...