Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropsychopharmacology ; 48(2): 341-350, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36088492

RESUMO

Peripheral inputs continuously shape brain function and can influence memory acquisition, but the underlying mechanisms have not been fully understood. Cannabinoid type-1 receptor (CB1R) is a well-recognized player in memory performance, and its systemic modulation significantly influences memory function. By assessing low arousal/non-emotional recognition memory in mice, we found a relevant role of peripheral CB1R in memory persistence. Indeed, the peripherally-restricted CB1R specific antagonist AM6545 showed significant mnemonic effects that were occluded in adrenalectomized mice, and after peripheral adrenergic blockade. AM6545 also transiently impaired contextual fear memory extinction. Vagus nerve chemogenetic inhibition reduced AM6545-induced mnemonic effect. Genetic CB1R deletion in dopamine ß-hydroxylase-expressing cells enhanced recognition memory persistence. These observations support a role of peripheral CB1R modulating adrenergic tone relevant for cognition. Furthermore, AM6545 acutely improved brain connectivity and enhanced extracellular hippocampal norepinephrine. In agreement, intra-hippocampal ß-adrenergic blockade prevented AM6545 mnemonic effects. Altogether, we disclose a novel CB1R-dependent peripheral mechanism with implications relevant for lengthening the duration of non-emotional memory.


Assuntos
Norepinefrina , Receptor CB1 de Canabinoide , Animais , Camundongos , Adrenérgicos/farmacologia , Encéfalo , Hipocampo , Norepinefrina/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores
2.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499491

RESUMO

Alzheimer's disease (AD) is characterised by the presence of extracellular amyloid plaques in the brain. They are composed of aggregated amyloid beta-peptide (Aß) misfolded into beta-sheets which are the cause of the AD memory impairment and dementia. Memory depends on the hippocampal formation and maintenance of synapses by long-term potentiation (LTP), whose main steps are the activation of NMDA receptors, the phosphorylation of CaMKIIα and the nuclear translocation of the transcription factor CREB. It is known that Aß oligomers (oAß) induce synaptic loss and impair the formation of new synapses. Here, we have studied the effects of oAß on CaMKIIα. We found that oAß produce reactive oxygen species (ROS), that induce CaMKIIα oxidation in human neuroblastoma cells as we assayed by western blot and immunofluorescence. Moreover, this oxidized isoform is significantly present in brain samples from AD patients. We found that the oxidized CaMKIIα is active independently of the binding to calcium/calmodulin, and that CaMKIIα phosphorylation is mutually exclusive with CaMKIIα oxidation as revealed by immunoprecipitation and western blot. An in silico modelling of the enzyme was also performed to demonstrate that oxidation induces an activated state of CaMKIIα. In brains from AD transgenic models of mice and in primary cultures of murine hippocampal neurons, we demonstrated that the oxidation of CaMKIIα induces the phosphorylation of CREB and its translocation to the nucleus to promote the transcription of ARC and BDNF. Our data suggests that CaMKIIα oxidation would be a pro-survival mechanism that is triggered when a noxious stimulus challenges neurons as do oAß.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Hipocampo/metabolismo , Potenciação de Longa Duração , Sinapses/metabolismo , Oxirredução , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo
3.
Elife ; 112022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36217821

RESUMO

Williams-Beuren syndrome (WBS) is a rare genetic multisystemic disorder characterized by mild-to-moderate intellectual disability and hypersocial phenotype, while the most life-threatening features are cardiovascular abnormalities. Nowadays, there are no pharmacological treatments to directly ameliorate the main traits of WBS. The endocannabinoid system (ECS), given its relevance for both cognitive and cardiovascular function, could be a potential druggable target in this syndrome. We analyzed the components of the ECS in the complete deletion (CD) mouse model of WBS and assessed the impact of its pharmacological modulation in key phenotypes relevant for WBS. CD mice showed the characteristic hypersociable phenotype with no preference for social novelty and poor short-term object-recognition performance. Brain cannabinoid type-1 receptor (CB1R) in CD male mice showed alterations in density and coupling with no detectable change in main endocannabinoids. Endocannabinoid signaling modulation with subchronic (10 days) JZL184, a selective inhibitor of monoacylglycerol lipase, specifically normalized the social and cognitive phenotype of CD mice. Notably, JZL184 treatment improved cardiovascular function and restored gene expression patterns in cardiac tissue. These results reveal the modulation of the ECS as a promising novel therapeutic approach to improve key phenotypic alterations in WBS.


Williams-Beuren syndrome (WBS) is a rare disorder that causes hyper-social behavior, intellectual disability, memory problems, and life-threatening overgrowth of the heart. Behavioral therapies can help improve the cognitive and social aspects of the syndrome and surgery is sometimes used to treat the effects on the heart, although often with limited success. However, there are currently no medications available to treat WBS. The endocannabinoid system ­ which consists of cannabis-like chemical messengers that bind to specific cannabinoid receptor proteins ­ has been shown to influence cognitive and social behaviors, as well as certain functions of the heart. This has led scientists to suspect that the endocannabinoid system may play a role in WBS, and drugs modifying this network of chemical messengers could help treat the rare condition. To investigate, Navarro-Romero, Galera-López et al. studied mice which had the same genetic deletion found in patients with WBS. Similar to humans, the male mice displayed hyper-social behaviors, had memory deficits and enlarged hearts. Navarro-Romero, Galera-López et al. found that these mutant mice also had differences in the function of the receptor protein cannabinoid type-1 (CB1). The genetically modified mice were then treated with an experimental drug called JZL184 that blocks the breakdown of endocannabinoids which bind to the CB1 receptor. This normalized the number and function of receptors in the brains of the WBS mice, and reduced their social and memory symptoms. The treatment also restored the animals' heart cells to a more normal size, improved the function of their heart tissue, and led to lower blood pressure. Further experiments revealed that the drug caused the mutant mice to activate many genes in their heart muscle cells to the same level as normal, healthy mice. These findings suggest that JZL184 or other drugs targeting the endocannabinoid system may help ease the symptoms associated with WBS. More studies are needed to test the drug's effectiveness in humans with this syndrome. Furthermore, the dramatic effect JZL184 has on the heart suggests that it might also help treat high blood pressure or conditions that cause the overgrowth of heart cells.


Assuntos
Canabinoides , Síndrome de Williams , Animais , Benzodioxóis , Modelos Animais de Doenças , Endocanabinoides/metabolismo , Masculino , Camundongos , Monoacilglicerol Lipases/genética , Fenótipo , Piperidinas , Síndrome de Williams/genética
4.
Brain ; 145(2): 729-743, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-34424282

RESUMO

Alzheimer's disease comprises amyloid-ß and hyperphosphorylated Tau accumulation, imbalanced neuronal activity, aberrant oscillatory rhythms and cognitive deficits. Non-demented with Alzheimer's disease neuropathology defines a novel clinical entity with amyloid-ß and Tau pathologies but preserved cognition. The mechanisms underlying such neuroprotection remain undetermined and animal models of non-demented with Alzheimer's disease neuropathology are currently unavailable. We demonstrate that J20/VLW mice (accumulating amyloid-ß and hyperphosphorylated Tau) exhibit preserved hippocampal rhythmic activity and cognition, as opposed to J20 and VLW animals, which show significant alterations. Furthermore, we show that the overexpression of mutant human Tau in coexistence with amyloid-ß accumulation renders a particular hyperphosphorylated Tau signature in hippocampal interneurons. The GABAergic septohippocampal pathway, responsible for hippocampal rhythmic activity, is preserved in J20/VLW mice, in contrast to single mutants. Our data highlight J20/VLW mice as a suitable animal model in which to explore the mechanisms driving cognitive preservation in non-demented with Alzheimer's disease neuropathology. Moreover, they suggest that a differential Tau phosphorylation pattern in hippocampal interneurons prevents the loss of GABAergic septohippocampal innervation and alterations in local field potentials, thereby avoiding cognitive deficits.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Neuropatologia , Proteínas tau/genética , Proteínas tau/metabolismo
5.
Mol Neurobiol ; 58(2): 617-630, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32996086

RESUMO

The brain encodes, stores, and retrieves relevant information in the form of memories that are classified as short-term (STM) and long-term memories (LTM) depending on the interval between acquisition and retrieval. It is classically accepted that STM undergo a consolidation process to form LTM, but the molecular determinants involved are not well understood. Among the molecular components relevant for memory formation, we focused our attention on the protein kinase C (PKC) family of enzymes since they control key aspects of the synaptic plasticity and memory. Within the different PKC isoforms, PKC-gamma has been specifically associated with learning and memory since mice lacking this isoform (PKC-gamma KO mice) showed mild cognitive impairment and deficits in hippocampal synaptic plasticity. We now reveal that PKC-gamma KO mice present a severe impairment in hippocampal-dependent STM using different memory tests including the novel object-recognition and novel place-recognition, context fear conditioning and trace fear conditioning. In contrast, no differences between genotypes were observed in an amygdala-dependent test, the delay fear conditioning. Strikingly, all LTM tasks that could be assessed 24 h after acquisition were not perturbed in the KO mice. The analysis of c-Fos expression in several brain areas after trace fear conditioning acquisition showed a blunted response in the dentate gyrus of PKC-gamma KO mice compared with WT mice, but such differences between genotypes were absent when the amygdala or the prefrontal cortex were examined. In the hippocampus, PKC-gamma was found to translocate to the membrane after auditory trace, but not after delay fear conditioning. Together, these results indicate that PKC-gamma dysfunction affects specifically hippocampal-dependent STM performance and disclose PKC-gamma as a molecular player differentially involved in STM and LTM processes.


Assuntos
Hipocampo/enzimologia , Memória de Longo Prazo , Memória de Curto Prazo , Proteína Quinase C/deficiência , Animais , Condicionamento Clássico , Giro Denteado/patologia , Medo , Isoenzimas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Memória Espacial
6.
Neuropsychopharmacology ; 43(5): 1021-1031, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28816239

RESUMO

Cannabis affects cognitive performance through the activation of the endocannabinoid system, and the molecular mechanisms involved in this process are poorly understood. Using the novel object-recognition memory test in mice, we found that the main psychoactive component of cannabis, delta9-tetrahydrocannabinol (THC), alters short-term object-recognition memory specifically involving protein kinase C (PKC)-dependent signaling. Indeed, the systemic or intra-hippocampal pre-treatment with the PKC inhibitors prevented the short-term, but not the long-term, memory impairment induced by THC. In contrast, systemic pre-treatment with mammalian target of rapamycin complex 1 inhibitors, known to block the amnesic-like effects of THC on long-term memory, did not modify such a short-term cognitive deficit. Immunoblot analysis revealed a transient increase in PKC signaling activity in the hippocampus after THC treatment. Thus, THC administration induced the phosphorylation of a specific Ser residue in the hydrophobic-motif at the C-terminal tail of several PKC isoforms. This significant immunoreactive band that paralleled cognitive performance did not match in size with the major PKC isoforms expressed in the hippocampus except for PKCθ. Moreover, THC transiently enhanced the phosphorylation of the postsynaptic calmodulin-binding protein neurogranin in a PKC dependent manner. These data demonstrate that THC alters short-term object-recognition memory through hippocampal PKC/neurogranin signaling.


Assuntos
Dronabinol/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Memória de Curto Prazo/efeitos dos fármacos , Proteína Quinase C/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Anisomicina/farmacologia , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Dronabinol/antagonistas & inibidores , Interações Medicamentosas , Isoenzimas/metabolismo , Masculino , Camundongos , Microinjeções , Neurogranina/metabolismo , Fenóis/farmacologia , Fosforilação/efeitos dos fármacos , Piperidinas/farmacologia , Quinoxalinas/farmacologia , Rimonabanto/farmacologia , Sirolimo/análogos & derivados , Sirolimo/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...