Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chromatographia ; 81(8): 1147-1162, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30220731

RESUMO

Dihydralazine and hydrochlorothiazide were stored at high temperature and humidity, under UV/Vis light and different pH, as individual drugs and the mixture. Then, a sensitive and selective HPLC-UV method was developed for simultaneous determination of dihydralazine and hydrochlorothiazide in presence of their degradation products. Finally, the degradation products were characterized through LC-DAD and LC-MS methods. Dihydralazine was sensitive to high temperature and humidity, UV/Vis light and pH ≥ 7. At the same time, it was resistant to acidic conditions. Hydrochlorothiazide was sensitive to high temperature and humidity, UV/Vis light and changes in pH. Its highest level of degradation was observed in 1 M HCl. Degradation of the drugs was higher when they were stressed in the mixture. In the case of dihydralazine, the percentage degradation was 5-15 times higher. What is more, dihydralazine became sensitive to acidic conditions. Hydrochlorothiazide was shown to be more sensitive to UV/Vis light and pH > 4. Degradation of dihydralazine and hydrochlorothiazide followed first-order kinetics. The quickest degradation of dihydralazine was found to be in 1 M NaOH while of hydrochlorothiazide was in 1 M HCl (individual hydrochlorothiazide) or at pH 7-10 (hydrochlorothiazide in the mixture). A number of new degradation products were detected and some of them were identified by our LC-DAD and LC-MS methods. In the stressed individual samples, (phenylmethyl)hydrazine and 1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide were observed for the first time. Interactions between dihydralazine and hydrochlorothiazide in the mixture were confirmed by additional degradation products, e.g., 2H-1,2,4-benzothiadiazine-7-sulfonamide 1,1,4-trioxide.

2.
RSC Adv ; 8(63): 36076-36089, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-35558458

RESUMO

Indapamide and dihydralazine can be combined in fixed-dose formulations because of their complementary actions against hypertension. On the other hand, combined formulations present the problem of chemical interactions between the active ingredients, e.g. accelerated degradation of constituents or generation of quite new degradation products. Therefore, the main goal of the present study was to examine the chemical stability of indapamide and dihydralazine, as individuals and as a mixture, to detect potent interactions between both constituents, using FT-IR, HPLC and LC-MS methods. It was clearly shown that both drugs degraded more when they were in the mixture, i.e. indapamide was degraded more under high temperature/high humidity while dihydralazine was more sensitive to UV/VIS light. In solutions, indapamide was sensitive to strong acidic and strong alkaline conditions while dihydralazine degraded at pH ≥ 7. Generally, the process of degradation of indapamide and dihydralazine followed first order kinetics. The fastest degradation of both indapamide and dihydralazine was found at pH ≥ 10. Several degradation products of indapamide and dihydralazine were detected and identified by our LC-MS method. Interactions between both drugs were confirmed by detection of new degradation products of indapamide, i.e. 4-chloro-3-sulfamoylbenzamide and 4-chloro-3-(formylsulfamoyl)-N-(2-methyl-2,3-dihydro-1H-indol-1-yl)benzamide, only in the presence of dihydralazine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA