Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(1): eadj4686, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38170783

RESUMO

Type 1 diabetes mellitus (T1DM) is characterized by insulin deficiency leading to hyperglycemia and several metabolic defects. Insulin therapy remains the cornerstone of T1DM management, yet it increases the risk of life-threatening hypoglycemia and the development of major comorbidities. Here, we report an insulin signaling-independent pathway able to improve glycemic control in T1DM rodents. Co-treatment with recombinant S100 calcium-binding protein A9 (S100A9) enabled increased adherence to glycemic targets with half as much insulin and without causing hypoglycemia. Mechanistically, we demonstrate that the hyperglycemia-suppressing action of S100A9 is due to a Toll-like receptor 4-dependent increase in glucose uptake in specific skeletal muscles (i.e., soleus and diaphragm). In addition, we found that T1DM mice have abnormal systemic inflammation, which is resolved by S100A9 therapy alone (or in combination with low insulin), hence uncovering a potent anti-inflammatory action of S100A9 in T1DM. In summary, our findings reveal the S100A9-TLR4 skeletal muscle axis as a promising therapeutic target for improving T1DM treatment.


Assuntos
Diabetes Mellitus Tipo 1 , Hiperglicemia , Hipoglicemia , Animais , Camundongos , Insulina/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemia/complicações , Hipoglicemia/tratamento farmacológico , Hiperglicemia/tratamento farmacológico , Calgranulina B
2.
Eur J Cell Biol ; 103(1): 151373, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38016352

RESUMO

Cells are continuously exposed to various sources of insults, among which temperature variations are extremely common. Epigenetic mechanisms, critical players in gene expression regulation, undergo alterations due to these stressors, potentially leading to health issues. Despite the significance of DNA methylation and histone modifications in gene expression regulation, their changes following heat and cold shock in human cells remain poorly understood. In this study, we investigated the epigenetic profiles of human cells subjected to hyperthermia and hypothermia, revealing significant variations. Heat shock primarily led to DNA methylation increments and epigenetic modifications associated with gene expression silencing. In contrast, cold shock presented a complex scenario, with both methylation and demethylation levels increasing, indicating different epigenetic responses to the opposite thermal stresses. These temperature-induced alterations in the epigenome, particularly their impact on chromatin structural organization, represent an understudied area that could offer important insights into genome function and potential prospects for therapeutic targets.


Assuntos
Resposta ao Choque Frio , Epigênese Genética , Humanos , Resposta ao Choque Frio/genética , Metilação de DNA , Cromatina/genética , Inativação Gênica
3.
Cell Death Discov ; 8(1): 467, 2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435831

RESUMO

During hemostasis, thrombosis, and inflammation, activated blood platelets release extracellular vesicles (PEVs) that represent biological mediators of physiological and pathological processes. We have recently demonstrated that the activation of platelets by breast cancer cells is accompanied by a massive release of PEVs, evidence that matches with the observation that breast cancer patients display increased levels of circulating PEVs. A core concept in PEVs biology is that their nature, composition and biological function are strongly influenced by the conditions that induced their release. In this study we have performed a comparative characterization of PEVs released by platelets upon activation with thrombin, a potent thrombotic stimulus, and upon exposure to the breast cancer cell line MDA-MB-231. By nanoparticle tracking analysis and tandem mass spectrometry we have characterized the two populations of PEVs, showing that the thrombotic and tumoral stimuli produced vesicles that largely differ in protein composition. The bioinformatic analysis of the proteomic data led to the identification of signaling pathways that can be differently affected by the two PEVs population in target cells. Specifically, we have demonstrated that both thrombin- and cancer-cell-induced PEVs reduce the migration and potentiate Ca2+-induced apoptosis of Jurkat cells, but only thrombin-derived PEVs also potentiate cell necrosis. Our results demonstrate that stimulation of platelets by thrombotic or tumoral stimuli induces the release of PEVs with different protein composition that, in turn, may elicit selective biological responses in target cells.

4.
Cells ; 11(19)2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36231082

RESUMO

BACKGROUND: Platelets can support cancer progression via the release of microparticles and microvesicles that enhance the migratory behaviour of recipient cancer cells. We recently showed that platelet-derived extracellular vesicles (PEVs) stimulate migration and invasiveness in highly metastatic MDA-MB-231 cells by stimulating the phosphorylation of p38 MAPK and the myosin light chain 2 (MLC2). Herein, we assessed whether the pro-migratory effect of PEVs involves the remodelling of the Ca2+ handling machinery, which drives MDA-MB-231 cell motility. METHODS: PEVs were isolated from human blood platelets, and Fura-2/AM Ca2+ imaging, RT-qPCR, and immunoblotting were exploited to assess their effect on intracellular Ca2+ dynamics and Ca2+-dependent migratory processes in MDA-MB-231 cells. RESULTS: Pretreating MDA-MB-231 cells with PEVs for 24 h caused an increase in Ca2+ release from the endoplasmic reticulum (ER) due to the up-regulation of SERCA2B and InsP3R1/InsP3R2 mRNAs and proteins. The consequent enhancement of ER Ca2+ depletion led to a significant increase in store-operated Ca2+ entry. The larger Ca2+ mobilization from the ER was required to potentiate serum-induced migration by recruiting p38 MAPK and MLC2. CONCLUSIONS: PEVs stimulate migration in the highly metastatic MDA-MB-231 breast cancer cell line by inducing a partial remodelling of the Ca2+ handling machinery.


Assuntos
Neoplasias da Mama , Cálcio/metabolismo , Vesículas Extracelulares , Plaquetas/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Vesículas Extracelulares/metabolismo , Feminino , Fura-2 , Humanos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Int J Mol Sci ; 23(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36142813

RESUMO

Circulating platelets are responsible for hemostasis and thrombosis but are also primary sensors of pathogens and are involved in innate immunity, inflammation, and sepsis. Sepsis is commonly caused by an exaggerated immune response to bacterial, viral, and fungal infections, and leads to severe thrombotic complications. Among others, the endotoxin lipopolysaccharide (LPS) found in the outer membrane of Gram-negative bacteria is the most common trigger of sepsis. Since the discovery of the expression of the LPS receptor TLR4 in platelets, several studies have investigated the ability of LPS to induce platelet activation and to contribute to a prothrombotic phenotype, per se or in combination with plasma proteins and platelet agonists. This issue, however, is still controversial, as different sources, purity, and concentrations of LPS, different platelet-purification protocols, and different methods of analysis have been used in the past two decades, giving contradictory results. This review summarizes and critically analyzes past and recent publications about LPS-induced platelet activation in vitro. A methodological section illustrates the principal platelet preparation protocols and significant differences. The ability of various sources of LPS to elicit platelet activation in terms of aggregation, granule secretion, cytokine release, ROS production, and interaction with leukocytes and NET formation is discussed.


Assuntos
Sepse , Trombose , Plaquetas/metabolismo , Citocinas/metabolismo , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos , Ativação Plaquetária , Agregação Plaquetária , Espécies Reativas de Oxigênio/metabolismo , Sepse/metabolismo , Trombose/metabolismo , Receptor 4 Toll-Like/metabolismo
6.
Haematologica ; 107(6): 1374-1383, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35142150

RESUMO

Deep vein thrombosis results from the cooperative action of leukocytes, platelets, and endothelial cells. The proline-rich tyrosine kinase Pyk2 regulates platelet activation and supports arterial thrombosis. In this study, we combined pharmacological and genetic approaches to unravel the role of Pyk2 in venous thrombosis. We found that mice lacking Pyk2 almost completely failed to develop deep venous thrombi upon partial ligation of the inferior vena cava. Pyk2-deficient platelets displayed impaired exposure of phosphatidylserine and tissue factor expression by endothelial cells and monocytes was completely prevented by inhibition of Pyk2. In human umbilical vein endothelial cells (HUVEC), inhibition of Pyk2 hampered IL-1b-induced expression of VCAM and P-selectin, and von Willebrand factor release. Pyk2-deficient platelets showed defective adhesion on von Willebrand factor and reduced ability to bind activated HUVEC under flow. Moreover, inhibition of Pyk2 in HUVEC strongly reduced platelet adhesion. Similarly, Pyk2-deficient neutrophils were unable to efficiently roll and adhere to immobilized endothelial cells under venous flow conditions. Moreover, platelets and neutrophils from Pyk2- knockout mice showed defective ability to form heterogeneous aggregates upon stimulation, while platelet monocyte interaction occurred normally. Consequently, platelet neutrophil aggregates, abundant in blood of wild-type mice upon inferior vena cava ligation, were virtually undetectable in Pyk2-knockout mice. Finally, we found that expression of Pyk2 was required for NETosis induced by activated platelets. Altogether our results demonstrate a critical role of Pyk2 in the regulation of the coordinated thromboinflammatory responses of endothelial cells, leukocytes and platelets leading to venous thrombosis. Pyk2 may represent a novel promising target in the treatment of deep vein thrombosis.


Assuntos
Quinase 2 de Adesão Focal/metabolismo , Trombose Venosa , Animais , Plaquetas/metabolismo , Células Endoteliais/metabolismo , Quinase 2 de Adesão Focal/genética , Humanos , Camundongos , Fosforilação , Prolina/metabolismo , Trombose Venosa/genética , Trombose Venosa/metabolismo , Fator de von Willebrand/metabolismo
7.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613595

RESUMO

Cell genome integrity is continuously threatened by various sources, both endogenous and exogenous. Oxidative stress causes a multitude of damages, severely affecting cell viability, fidelity of genetic information inheritance, and determining profound alterations in gene expression. Epigenetics represents a major form of gene expression modulation, influencing DNA accessibility to transcription factors and the overall nuclear architecture. When assessing the stress-induced epigenome reprogramming, widely diffused biochemical and molecular approaches commonly fail to incorporate analyses such as architectural chromatin alterations and target molecules precise spatial localization. Unveiling the significance of the nuclear response to the oxidative stress, as well as the functional effects over the chromatin organization, may reveal targets and strategies for approaches aiming at limiting the impact on cellular stability. For these reasons, we utilized potassium bromate treatment, a stressor able to induce DNA damages without altering the cellular microenvironment, hence purely modeling nuclear oxidative stress. By means of high-resolution techniques, we described profound alterations in DNA and histone epigenetic modifications and in chromatin organization in response to the reactive oxygen species.


Assuntos
Reprogramação Celular , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Projetos Piloto , Reprogramação Celular/genética , Epigênese Genética , DNA/metabolismo , Cromatina/genética
8.
Biochim Biophys Acta Mol Cell Res ; 1867(10): 118799, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32693110

RESUMO

Neutrophils are first responders in infection and inflammation. They are able to roll, adhere and transmigrate through the endothelium to reach the site of infection, where they fight pathogens through secretion of granule contents, production of reactive oxygen species, extrusion of neutrophil extracellular traps, and phagocytosis. In this study we explored the role of the non-receptor focal adhesion kinase Pyk2 in neutrophil adhesion and activation. Using a specific Pyk2 pharmacological inhibitor, PF-4594755, as well as Pyk2-deficient murine neutrophils, we found that Pyk2 is activated upon integrin αMß2-mediated neutrophil adhesion to fibrinogen. This process is triggered by Src family kinases-mediated phosphorylation and supported by Pyk2 autophosphorylation on Y402. In neutrophil adherent to fibrinogen, Pyk2 activates PI3K-dependent pathways promoting the phosphorylation of Akt and of its downstream effector GSK3. Pyk2 also dynamically regulates MAP kinases in fibrinogen-adherent neutrophils, as it stimulates p38MAPK but negatively regulates ERK1/2. Pharmacological inhibition of Pyk2 significantly prevented adhesion of human neutrophils to fibrinogen, and neutrophils from Pyk2-knockout mice showed a reduced ability to adhere compared to wildtype cells. Accordingly, neutrophil adhesion to fibrinogen was reduced upon inhibition of p38MAPK but potentiated by ERK1/2 inhibition. Neutrophil adherent to fibrinogen, but not to polylysine, were able to produce ROS upon lipopolysaccharide challenge and ROS production was completely suppressed upon inhibition of Pyk2. By contrast PMA-induced ROS production by neutrophil adherent to either fibrinogen or polylysine was independent from Pyk2. Altogether these results demonstrate that Pyk2 is an important effector in the coordinated puzzle regulating neutrophil adhesion and activation.


Assuntos
Quinase 2 de Adesão Focal/metabolismo , Antígeno de Macrófago 1/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Fibrinogênio/farmacologia , Humanos , Lipopolissacarídeos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA