Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Calcium ; 121: 102905, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38788257

RESUMO

TMEM16 proteins, also known as anoctamins, are a family of ten membrane proteins with various tissue expression and subcellular localization. TMEM16A (anoctamin 1) is a plasma membrane protein that acts as a calcium-activated chloride channel. It is expressed in many types of epithelial cells, smooth muscle cells and some neurons. In airway epithelial cells, TMEM16A expression is particularly enhanced by inflammatory stimuli that also promote goblet cell metaplasia and mucus hypersecretion. Therefore, pharmacological modulation of TMEM16A could be beneficial to improve mucociliary clearance in chronic obstructive respiratory diseases. However, the correct approach to modulate TMEM16A activity (activation or inhibition) is still debated. Pharmacological inhibitors of TMEM16A could also be useful as anti-hypertensive agents given the TMEM16A role in smooth muscle contraction. In contrast to TMEM16A, TMEM16F (anoctamin 6) behaves as a calcium-activated phospholipid scramblase, responsible for the externalization of phosphatidylserine on cell surface. Inhibitors of TMEM16F could be useful as anti-coagulants and anti-viral agents. The role of other anoctamins as therapeutic targets is still unclear since their physiological role is still to be defined.

2.
J Cyst Fibros ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508950

RESUMO

BACKGROUND: People with cystic fibrosis (pwCF) are considered at risk of developing severe forms of respiratory viral infections. We studied the consequences of COVID-19 and virus-host cell interactions in CF vs. non-CF individuals. METHODS: We enrolled CF and non-CF individuals, with /without COVID-like symptoms, who underwent nasopharyngeal swab for detection of SARS-CoV-2. Gene expression was evaluated by RNA sequencing on the same nasopharyngeal swabs. Criteria for COVID-19 severity were hospitalization and requirement or increased need of oxygen therapy. RESULTS: The study included 171 patients (65 pwCF and 106 non-CF individuals). Among them, 10 pwCF (15.4 %) and 43 people without CF (40.6 %) tested positive at RT-PCR. Symptomatic infections were observed in 8 pwCF (with 2 requiring hospitalization) and in 11 individuals without CF (6 requiring hospitalization). Host transcriptomic analysis revealed that genes involved in protein translation, particularly ribosomal components, were downregulated in CF samples irrespective of SARS-CoV-2 status. In SARS-CoV-2 negative individuals, we found a significant difference in genes involved with motile cilia expression and function, which were upregulated in CF samples. Pathway enrichment analysis indicated that interferon signaling in response to SARS-CoV-2 infection was upregulated in both pwCF and non-CF subjects. CONCLUSIONS: COVID-19 does not seem to be more severe in CF, possibly due to factors intrinsic to this population: the lower expression of ribosomal genes may downregulate the protein translation machinery, thus creating an unfavorable environment for viral replication.

3.
Biomaterials ; 308: 122546, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552367

RESUMO

Patients with cystic fibrosis (CF) experience severe lung disease, including persistent infections, inflammation, and irreversible fibrotic remodeling of the airways. Although therapy with transmembrane conductance regulator (CFTR) protein modulators reached optimal results in terms of CFTR rescue, lung transplant remains the best line of care for patients in an advanced stage of CF. Indeed, chronic inflammation and tissue remodeling still represent stumbling blocks during treatment, and underlying mechanisms are still unclear. Nowadays, animal models are not able to fully replicate clinical features of the human disease and the conventional in vitro models lack a stromal compartment undergoing fibrotic remodeling. To address this gap, we show the development of a 3D full-thickness model of CF with a human bronchial epithelium differentiated on a connective airway tissue. We demonstrated that the epithelial cells not only underwent mucociliary differentiation but also migrated in the connective tissue and formed gland-like structures. The presence of the connective tissue stimulated the pro-inflammatory behaviour of the epithelium, which activated the fibroblasts embedded into their own extracellular matrix (ECM). By varying the composition of the model with CF epithelial cells and a CF or healthy connective tissue, it was possible to replicate different moments of CF disease, as demonstrated by the differences in the transcriptome of the CF epithelium in the different conditions. The possibility to faithfully represent the crosstalk between epithelial and connective in CF through the full thickness model, along with inflammation and stromal activation, makes the model suitable to better understand mechanisms of disease genesis, progression, and response to therapy.


Assuntos
Tecido Conjuntivo , Fibrose Cística , Células Epiteliais , Humanos , Fibrose Cística/patologia , Fibrose Cística/metabolismo , Tecido Conjuntivo/patologia , Tecido Conjuntivo/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Matriz Extracelular/metabolismo , Diferenciação Celular , Modelos Biológicos , Fibroblastos/metabolismo
4.
Front Pharmacol ; 14: 1293578, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38149052

RESUMO

Introduction: Cystic fibrosis (CF) is caused by defective Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) proteins. CFTR controls chloride (Cl-) and bicarbonate (HCO3 -) transport into the Airway Surface Liquid (ASL). We investigated the impact of F508del-CFTR correction on HCO3 - secretion by studying transepithelial HCO3 - fluxes. Methods: HCO3 - secretion was measured by pH-stat technique in primary human respiratory epithelial cells from healthy subjects (WT) and people with CF (pwCF) carrying at least one F508del variant. Its changes after CFTR modulation by the triple combination VX445/661/770 and in the context of TNF-α+IL-17 induced inflammation were correlated to ASL pH and transcriptional levels of CFTR and other HCO3 - transporters of airway epithelia such as SLC26A4 (Pendrin), SLC26A9 and NBCe1. Results: CFTR-mediated HCO3 - secretion was not detected in F508del primary human respiratory epithelial cells. It was rescued up to ∼ 80% of the WT level by VX-445/661/770. In contrast, TNF-α+IL-17 normalized transepithelial HCO3 - transport and increased ASL pH. This was related to an increase in SLC26A4 and CFTR transcript levels. VX-445/661/770 induced an increase in pH only in the context of inflammation. Effects on HCO3 - transport were not different between F508del homozygous and F508del compound heterozygous CF airway epithelia. Conclusion: Our studies show that correction of F508del-CFTR HCO3 - is not sufficient to buffer acidic ASL and inflammation is a key regulator of HCO3 - secretion in CF airways. Prediction of the response to CFTR modulators by theratyping should take into account airway inflammation.

5.
Sci Rep ; 13(1): 7604, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165082

RESUMO

F508del, the most frequent mutation in cystic fibrosis (CF), impairs the stability and folding of the CFTR chloride channel, thus resulting in intracellular retention and CFTR degradation. The F508del defect can be targeted with pharmacological correctors, such as VX-809 and VX-445, that stabilize CFTR and improve its trafficking to plasma membrane. Using a functional test to evaluate a panel of chemical compounds, we have identified tricyclic pyrrolo-quinolines as novel F508del correctors with high efficacy on primary airway epithelial cells from CF patients. The most effective compound, PP028, showed synergy when combined with VX-809 and VX-661 but not with VX-445. By testing the ability of correctors to stabilize CFTR fragments of different length, we found that VX-809 is effective on the amino-terminal portion of the protein that includes the first membrane-spanning domain (amino acids 1-387). Instead, PP028 and VX-445 only show a stabilizing effect when the second membrane-spanning domain is included (amino acids 1-1181). Our results indicate that tricyclic pyrrolo-quinolines are a novel class of CFTR correctors that, similarly to VX-445, interact with CFTR at a site different from that of VX-809. Tricyclic pirrolo-quinolines may represent novel CFTR correctors suitable for combinatorial pharmacological treatments to treat the basic defect in CF.


Assuntos
Fibrose Cística , Quinolinas , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Canais de Cloreto/genética , Quinolinas/uso terapêutico , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Benzodioxóis/farmacologia , Benzodioxóis/uso terapêutico , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Mutação
6.
ACS Biomater Sci Eng ; 9(5): 2780-2792, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37019688

RESUMO

Cystic fibrosis (CF) is one of the most frequent genetic diseases, caused by dysfunction of the CF transmembrane conductance regulator (CFTR) chloride channel. CF particularly affects the epithelium of the respiratory system. Therapies aim at rescuing CFTR defects in the epithelium, but CF genetic heterogeneity hinders the finding of a single and generally effective treatment. Therefore, in vitro models have been developed to study CF and guide patient therapy. Here, we show a CF model on-chip by coupling the feasibility of the human bronchial epithelium differentiated in vitro at the air-liquid interface and the innovation of microfluidics. We demonstrate that the dynamic flow enhanced cilia distribution and increased mucus quantity, thus promoting tissue differentiation in a short time. The microfluidic devices highlighted differences between CF and non-CF epithelia, as shown by electrophysiological measures, mucus quantity, viscosity, and the analysis of ciliary beat frequency. The described model on-chip may be a handy instrument for studying CF and setting up therapies. As a proof of principle, we administrated the corrector VX-809 on-chip and observed a decrease in mucus thickness and viscosity.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Microfluídica , Células Cultivadas , Mucosa Respiratória
7.
Mol Ther ; 31(6): 1647-1660, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-36895161

RESUMO

Cystic fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The 2789+5G>A CFTR mutation is a quite frequent defect causing an aberrant splicing and a non-functional CFTR protein. Here we used a CRISPR adenine base editing (ABE) approach to correct the mutation in the absence of DNA double-strand breaks (DSB). To select the strategy, we developed a minigene cellular model reproducing the 2789+5G>A splicing defect. We obtained up to 70% editing in the minigene model by adapting the ABE to the PAM sequence optimal for targeting 2789+5G>A with a SpCas9-NG (NG-ABE). Nonetheless, the on-target base correction was accompanied by secondary (bystander) A-to-G conversions in nearby nucleotides, which affected the wild-type CFTR splicing. To decrease the bystander edits, we used a specific ABE (NG-ABEmax), which was delivered as mRNA. The NG-ABEmax RNA approach was validated in patient-derived rectal organoids and bronchial epithelial cells showing sufficient gene correction to recover the CFTR function. Finally, in-depth sequencing revealed high editing precision genome-wide and allele-specific correction. Here we report the development of a base editing strategy to precisely repair the 2789+5G>A mutation resulting in restoration of the CFTR function, while reducing bystander and off-target activities.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , RNA/metabolismo , Adenina , Fibrose Cística/genética , Fibrose Cística/terapia , Fibrose Cística/metabolismo , Splicing de RNA , Mutação , Edição de Genes/métodos
8.
PNAS Nexus ; 2(1): pgac288, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36712939

RESUMO

Pharmacological modulators of the Ca2+ signaling cascade are important research tools and may translate into novel therapeutic strategies for a series of human diseases. We carried out a screening of a maximally diverse chemical library using the Ca2+-sensitive Cl- channel TMEM16A as a functional readout. We found compounds that were able to potentiate UTP-dependent TMEM16A activation. Mechanism of action of these compounds was investigated by a panel of assays that looked at intracellular Ca2+ mobilization triggered by extracellular agonists or by caged-IP3 photolysis, PIP2 breakdown by phospholipase C, and ion channel activity on nuclear membrane. One compound appears as a selective potentiator of inositol triphosphate receptor type 1 (ITPR1) with a possible application for some forms of spinocerebellar ataxia. A second compound is instead a potentiator of the P2RY2 purinergic receptor, an activity that could promote fluid secretion in dry eye and chronic obstructive respiratory diseases.

9.
J Cyst Fibros ; 22(3): 525-537, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36543707

RESUMO

BACKGROUND: Cystic fibrosis is caused by mutations impairing expression, trafficking, stability and/or activity of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. The G1244E mutation causes a severe gating defect that it is not completely rescued by ivacaftor but requires the use of a second compound (a co-potentiator). Recently, it has been proposed that the corrector elexacaftor may act also as a co-potentiator. METHODS: By using molecular, biochemical and functional analyses we performed an in-depth characterization of the G1244E-CFTR mutant in heterologous and native cell models. RESULTS: Our studies demonstrate that processing and function of the mutant protein, as well as its pharmacological sensitivity, are markedly dependent on cell background. In heterologous expression systems, elexacaftor mainly acted on G1244E-CFTR as a co-potentiator, thus ameliorating the gating defect. On the contrary, in the native nasal epithelial cell model, elexacaftor did not act as a co-potentiator, but it increased mature CFTR expression possibly by improving mutant's defective stability at the plasma membrane. CONCLUSIONS: Our study highlights the importance of the cell background in the evaluation of CFTR modulator effects. Further, our results draw attention to the need for the development of novel potentiators having different mechanisms with respect to ivacaftor to improve channel activity for mutants with severe gating defect.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Aminofenóis/farmacologia , Benzodioxóis/farmacologia , Mutação
10.
Br J Pharmacol ; 180(6): 775-785, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36444690

RESUMO

BACKGROUND AND PURPOSE: Pharmacological inhibitors of TMEM16A (ANO1), a Ca2+ -activated Cl- channel, are important tools of research and possible therapeutic agents acting on smooth muscle, airway epithelia and cancer cells. We tested a panel of TMEM16A inhibitors, including CaCCinh -A01, niclosamide, MONNA, Ani9 and niflumic acid, to evaluate their possible effect on intracellular Ca2+ . EXPERIMENTAL APPROACH: We recorded cytosolic Ca2+ increase elicited with UTP, ionomycin or IP3 uncaging. KEY RESULTS: Unexpectedly, we found that all compounds, except for Ani9, markedly decreased intracellular Ca2+ elevation induced by stimuli acting on intracellular Ca2+ stores. These effects were similarly observed in cells with and without TMEM16A expression. We investigated in more detail the mechanism of action of niclosamide and CaCCinh -A01. Acute addition of niclosamide directly increased intracellular Ca2+ , an activity consistent with inhibition of the SERCA pump. In contrast to niclosamide, CaCCinh -A01 did not elevate intracellular Ca2+ , thus implying a different mechanism of action, possibly a block of inositol triphosphate receptors. CONCLUSIONS AND IMPLICATIONS: Most TMEM16A inhibitors are endowed with indirect effects mediated by alteration of intracellular Ca2+ handling, which may in part preclude their use as TMEM16A research tools.


Assuntos
Cálcio , Canais de Cloreto , Cálcio/metabolismo , Anoctamina-1/metabolismo , Niclosamida/farmacologia , Sinalização do Cálcio
11.
Physiol Genomics ; 54(7): 273-282, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35658672

RESUMO

Ion channels are potentially exploitable as pharmacological targets to treat asthma. This study evaluated the role of KCa3.1 channels, encoded by Kcnn4, in regulating the gene expression of mouse airway epithelium and the development of asthma traits. We used the ovalbumin (OVA) challenge as an asthma model in wild-type and Kcnn4-/- mice, performed histological analysis, and measured serum IgE to evaluate asthma traits. We analyzed gene expression of isolated epithelial cells of trachea or bronchi using mRNA sequencing and gene ontology and performed Ussing chamber experiments in mouse trachea to evaluate anion secretion. Gene expression of epithelial cells from mouse airways differed between trachea and bronchi, indicating regional differences in the inflammatory and transepithelial transport properties of proximal and distal airways. We found that Kcnn4 silencing reduced mast cell numbers, mucus, and collagen in the airways, and reduced the amount of epithelial anion secretion in the OVA-challenged animals. In addition, gene expression was differentially modified in the trachea and bronchi, with Kcnn4 genetic silencing significantly altering the expression of genes involved in the TNF pathway, supporting the potential of KCa3.1 as a therapeutic target for asthma.


Assuntos
Asma , Traqueia , Animais , Asma/genética , Asma/metabolismo , Asma/patologia , Brônquios/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/metabolismo , Traqueia/metabolismo , Traqueia/patologia
12.
Curr Opin Pharmacol ; 64: 102206, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35364521

RESUMO

Cystic fibrosis (CF) is a multi-organ genetic disease caused by loss of function of CFTR, a cAMP-regulated chloride channel expressed in epithelial cells. In airway epithelia, CFTR-dependent chloride secretion is required to humidify mucosal surface and to allow efficient mucociliary clearance. In CF patients, CFTR deficit causes chronic bacterial infections and airway obstruction by mucus accumulation. Airway epithelial cells also express TMEM16A (ANO1), a second type of chloride channel, whose activity is controlled by cytosolic calcium concentration. Pharmacological stimulation of TMEM16A could be beneficial to bypass CFTR defect. However, the relationship of TMEM16A with mucus hypersecretion needs to be clarified. Multiple large scale screenings have been carried out to identify inhibitors and activators/potentiators of TMEM16A, including CaCCinh-A01, T16inh-A01, Ani9, TMinh-23, MONNA, Eact, and ETX001. Such compounds are important as research tools, to assess the role of TMEM16A in health and disease, and as possible therapeutic agents.


Assuntos
Fibrose Cística , Anoctamina-1 , Canais de Cloreto , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Depuração Mucociliar , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
13.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35328596

RESUMO

Loss-of-function mutations of the CFTR gene cause cystic fibrosis (CF) through a variety of molecular mechanisms involving altered expression, trafficking, and/or activity of the CFTR chloride channel. The most frequent mutation among CF patients, F508del, causes multiple defects that can be, however, overcome by a combination of three pharmacological agents that improve CFTR channel trafficking and gating, namely, elexacaftor, tezacaftor, and ivacaftor. This study was prompted by the evidence of two CF patients, compound heterozygous for F508del and a minimal function variant, who failed to obtain any beneficial effects following treatment with the triple drug combination. Functional studies on nasal epithelia generated in vitro from these patients confirmed the lack of response to pharmacological treatment. Molecular characterization highlighted the presence of an additional amino acid substitution, L467F, in cis with the F508del variant, demonstrating that both patients were carriers of a complex allele. Functional and biochemical assays in heterologous expression systems demonstrated that the double mutant L467F-F508del has a severely reduced activity, with negligible rescue by CFTR modulators. While further studies are needed to investigate the actual prevalence of the L467F-F508del allele, our results suggest that this complex allele should be taken into consideration as plausible cause in CF patients not responding to CFTR modulators.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Alelos , Aminofenóis , Benzodioxóis/farmacologia , Benzodioxóis/uso terapêutico , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Combinação de Medicamentos , Humanos , Indóis , Mutação , Pirazóis , Piridinas , Pirrolidinas , Quinolonas
14.
Cell Mol Life Sci ; 79(1): 67, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-34971429

RESUMO

Mutations in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein lead to persistent lung bacterial infections, mainly due to Pseudomonas aeruginosa, causing loss of respiratory function and finally death of people affected by CF. Unfortunately, even in the era of CFTR modulation therapies, management of pulmonary infections in CF remains highly challenging especially for patients with advanced stages of lung disease. Recently, we identified antimicrobial peptides (AMPs), namely Esc peptides, with potent antipseudomonal activity. In this study, by means of electrophysiological techniques and computational studies we discovered their ability to increase the CFTR-controlled ion currents, by direct interaction with the F508del-CFTR mutant. Remarkably, this property was not explored previously with any AMPs or peptides in general. More interestingly, in contrast with clinically used CFTR modulators, Esc peptides would give particular benefit to CF patients by combining their capability to eradicate lung infections and to act as promoters of airway wound repair with their ability to ameliorate the activity of the channel with conductance defects. Overall, our findings not only highlighted Esc peptides as the first characterized AMPs with a novel property, that is the potentiator activity of CFTR, but also paved the avenue to investigate the functions of AMPs and/or other peptide molecules, for a new up-and-coming pharmacological approach to address CF lung disease.


Assuntos
Peptídeos Antimicrobianos/metabolismo , Peptídeos Antimicrobianos/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Pneumopatias/tratamento farmacológico , Infecções por Pseudomonas/tratamento farmacológico , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bicarbonatos/metabolismo , Cloretos/metabolismo , Fibrose Cística/genética , Fibrose Cística/microbiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Transporte de Íons/efeitos dos fármacos , Pneumopatias/microbiologia , Pneumopatias/patologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/patogenicidade , Ratos , Ratos Endogâmicos F344
15.
Int J Mol Sci ; 22(21)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34769402

RESUMO

Cystic fibrosis (CF) is caused by loss of function of the CFTR chloride channel. A substantial number of CF patients carry nonsense mutations in the CFTR gene. These patients cannot directly benefit from pharmacological correctors and potentiators that have been developed for other types of CFTR mutations. We evaluated the efficacy of combinations of drugs targeting at various levels the effects of nonsense mutations: SMG1i to protect CFTR mRNA from nonsense-mediated decay (NMD), G418 and ELX-02 for readthrough, VX-809 and VX-445 to promote protein maturation and function, PTI-428 to enhance CFTR protein synthesis. We found that the extent of rescue and sensitivity to the various agents is largely dependent on the type of mutation, with W1282X and R553X being the mutations most and least sensitive to pharmacological treatments, respectively. In particular, W1282X-CFTR was highly responsive to NMD suppression by SMG1i but also required treatment with VX-445 corrector to show function. In contrast, G542X-CFTR required treatment with readthrough agents and VX-809. Importantly, we never found cooperativity between the NMD inhibitor and readthrough compounds. Our results indicate that treatment of CF patients with nonsense mutations requires a precision medicine approach with the design of specific drug combinations for each mutation.


Assuntos
Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Códon sem Sentido , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Degradação do RNAm Mediada por Códon sem Sentido/efeitos dos fármacos , Pirazóis/farmacologia , Piridinas/farmacologia , Pirrolidinas/farmacologia , Brônquios/efeitos dos fármacos , Agonistas dos Canais de Cloreto/farmacologia , Fibrose Cística/genética , Fibrose Cística/patologia , Células Epiteliais/efeitos dos fármacos , Humanos
16.
Am J Physiol Cell Physiol ; 321(6): C932-C946, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34644122

RESUMO

Chloride transport across cell membranes is broadly involved in epithelial fluid transport, cell volume and pH regulation, muscle contraction, membrane excitability, and organellar acidification. The human genome encodes at least 53 chloride-transporting proteins with expression in cell plasma or intracellular membranes, which include chloride channels, exchangers, and cotransporters, some having broad anion specificity. Loss-of-function mutations in chloride transporters cause a wide variety of human diseases, including cystic fibrosis, secretory diarrhea, kidney stones, salt-wasting nephropathy, myotonia, osteopetrosis, hearing loss, and goiter. Although impactful advances have been made in the past decade in drug treatment of cystic fibrosis using small molecule modulators of the defective cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, other chloride channels and solute carrier proteins (SLCs) represent relatively underexplored target classes for drug discovery. New opportunities have emerged for the development of chloride transport modulators as potential therapeutics for secretory diarrheas, constipation, dry eye disorders, kidney stones, polycystic kidney disease, hypertension, and osteoporosis. Approaches to chloride transport-targeted drug discovery are reviewed herein, with focus on chloride channel and exchanger classes in which recent preclinical advances have been made in the identification of small molecule modulators and in proof of concept testing in experimental animal models.


Assuntos
Antiporters/efeitos dos fármacos , Canais de Cloreto/efeitos dos fármacos , Cloretos/metabolismo , Desenho de Fármacos , Descoberta de Drogas , Moduladores de Transporte de Membrana/farmacologia , Animais , Antiporters/genética , Antiporters/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Transporte de Íons , Cinética , Moduladores de Transporte de Membrana/química , Mutação , Transportadores de Sulfato/efeitos dos fármacos , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
17.
Int J Mol Sci ; 22(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067708

RESUMO

Deletion of phenylalanine at position 508 (F508del) in the CFTR chloride channel is the most frequent mutation in cystic fibrosis (CF) patients. F508del impairs the stability and folding of the CFTR protein, thus resulting in mistrafficking and premature degradation. F508del-CFTR defects can be overcome with small molecules termed correctors. We investigated the efficacy and properties of VX-445, a newly developed corrector, which is one of the three active principles present in a drug (Trikafta®/Kaftrio®) recently approved for the treatment of CF patients with F508del mutation. We found that VX-445, particularly in combination with type I (VX-809, VX-661) and type II (corr-4a) correctors, elicits a large rescue of F508del-CFTR function. In particular, in primary bronchial epithelial cells of CF patients, the maximal rescue obtained with corrector combinations including VX-445 was close to 60-70% of CFTR function in non-CF cells. Despite this high efficacy, analysis of ubiquitylation, resistance to thermoaggregation, protein half-life, and subcellular localization revealed that corrector combinations did not fully normalize F508del-CFTR behavior. Our study indicates that it is still possible to further improve mutant CFTR rescue with the development of corrector combinations having maximal effects on mutant CFTR structural and functional properties.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Pirazóis/farmacologia , Piridinas/farmacologia , Pirrolidinas/farmacologia , Aminofenóis/farmacologia , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Combinação de Medicamentos , Células Epiteliais/metabolismo , Humanos , Indóis/farmacologia , Dobramento de Proteína/efeitos dos fármacos , Pirazóis/metabolismo , Piridinas/metabolismo , Pirrolidinas/metabolismo , Quinolinas/farmacologia
19.
Mol Genet Genomic Med ; 9(4): e1656, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33713579

RESUMO

BACKGROUND: New drugs that target the basic defect in cystic fibrosis (CF) patients may now be used in a large number of patients carrying responsive mutations. Nevertheless, further research is needed to extend the benefit of these treatments to patients with rare mutations that are still uncharacterized in vitro and that are not included in clinical trials. For this purpose, ex vivo models are necessary to preliminary assessing the effect of CFTR modulators in these cases. METHOD: We report the clinical effectiveness of lumacaftor/ivacaftor therapy prescribed to a CF child with a rare genetic profile (p.Phe508del/p.Gly970Asp) after testing the drug on nasal epithelial cells. We observed a significant drop of the sweat chloride value, as of the lung clearance index. A longer follow-up period is needed to define the effects of therapy on pancreatic status, although an increase of the fecal elastase values was found. CONCLUSION: Drug response obtained on nasal epithelial cells correlates with changes in vivo therapeutic endpoints and can be a predictor of clinical efficacy of novel drugs especially in pediatric patients.


Assuntos
Aminofenóis/uso terapêutico , Aminopiridinas/uso terapêutico , Benzodioxóis/uso terapêutico , Agonistas dos Canais de Cloreto/uso terapêutico , Fibrose Cística/tratamento farmacológico , Genótipo , Quinolonas/uso terapêutico , Aminofenóis/administração & dosagem , Aminofenóis/farmacologia , Aminopiridinas/administração & dosagem , Aminopiridinas/farmacologia , Benzodioxóis/administração & dosagem , Benzodioxóis/farmacologia , Células Cultivadas , Pré-Escolar , Agonistas dos Canais de Cloreto/administração & dosagem , Agonistas dos Canais de Cloreto/farmacologia , Cloretos/metabolismo , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Humanos , Mutação de Sentido Incorreto , Mucosa Nasal/citologia , Elastase Pancreática/metabolismo , Quinolonas/administração & dosagem , Quinolonas/farmacologia
20.
Proc Natl Acad Sci U S A ; 117(51): 32453-32463, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33288711

RESUMO

Pathogenic mutations in the copper transporter ATP7B have been hypothesized to affect its protein interaction landscape contributing to loss of function and, thereby, to hepatic copper toxicosis in Wilson disease. Although targeting mutant interactomes was proposed as a therapeutic strategy, druggable interactors for rescue of ATP7B mutants remain elusive. Using proteomics, we found that the frequent H1069Q substitution promotes ATP7B interaction with HSP70, thus accelerating endoplasmic reticulum (ER) degradation of the mutant protein and consequent copper accumulation in hepatic cells. This prompted us to use an HSP70 inhibitor as bait in a bioinformatics search for structurally similar Food and Drug Administration-approved drugs. Among the hits, domperidone emerged as an effective corrector that recovered trafficking and function of ATP7B-H1069Q by impairing its exposure to the HSP70 proteostatic network. Our findings suggest that HSP70-mediated degradation can be safely targeted with domperidone to rescue ER-retained ATP7B mutants and, hence, to counter the onset of Wilson disease.


Assuntos
ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Domperidona/farmacologia , Proteínas de Choque Térmico HSP70/metabolismo , Degeneração Hepatolenticular/genética , Benzimidazóis/química , Benzimidazóis/farmacologia , Células Cultivadas , Cobre/metabolismo , Domperidona/química , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Células Hep G2 , Hepatócitos/metabolismo , Degeneração Hepatolenticular/tratamento farmacológico , Degeneração Hepatolenticular/metabolismo , Degeneração Hepatolenticular/patologia , Humanos , Mutação de Sentido Incorreto , Ácidos Nipecóticos/química , Ácidos Nipecóticos/farmacologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...