Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 30(2): 488-499, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36477079

RESUMO

Cisplatin and other platinum-based anticancer agents are among the most widely used chemotherapy drugs in the treatment of different types of cancer. However, it is common to find patients who respond well to treatment at first but later relapse due to the appearance of resistance to cisplatin. Among the mechanisms responsible for this phenomenon is the increase in DNA damage repair. Here, we elucidate the effect of cisplatin on the MRN (MRE11-RAD50-NBS1) DNA damage sensor complex. We found that the tumor suppressor FBXW7 is a key factor in controlling the turnover of the MRN complex by inducing its degradation through lysosomes. Inhibition of lysosomal enzymes allowed the detection of the association of FBXW7-dependent ubiquitylated MRN with LC3 and the autophagy adaptor p62/SQSTM1 and the localization of MRN in lysosomes. Furthermore, cisplatin-induced cell death increased MRN degradation, suggesting that this complex is one of the targets that favor cell death. These findings open the possibility of using the induction of the degradation of the MRN complex after genotoxic damage as a potential therapeutic strategy to eliminate tumor cells.


Assuntos
Cisplatino , Enzimas Reparadoras do DNA , Humanos , Cisplatino/farmacologia , Proteína 7 com Repetições F-Box-WD/metabolismo , Proteína Homóloga a MRE11 , Enzimas Reparadoras do DNA/genética , Proteínas de Ciclo Celular/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hidrolases Anidrido Ácido/metabolismo
2.
Cancers (Basel) ; 12(4)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316282

RESUMO

Too much of a good thing can become a bad thing. An example is FBXW7, a well-known tumor suppressor that may also contribute to tumorigenesis. Here, we reflect on the results of three laboratories describing the role of FBXW7 in the degradation of p53 and the possible implications of this finding in tumor cell development. We also speculate about the function of FBXW7 as a key player in the cell fate after DNA damage and how this could be exploited in the treatment of cancer disease.

3.
FASEB J ; 33(10): 11420-11430, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31337255

RESUMO

Eukaryotic cells have developed sophisticated mechanisms to ensure the integrity of the genome and prevent the transmission of altered genetic information to daughter cells. If this control system fails, accumulation of mutations would increase risk of diseases such as cancer. Ubiquitylation, an essential process for protein degradation and signal transduction, is critical for ensuring genome integrity as well as almost all cellular functions. Here, we investigated the role of the SKP1-Cullin-1-F-box protein (SCF)-[F-box and tryptophan-aspartic acid (WD) repeat domain containing 7 (FBXW7)] ubiquitin ligase in cell proliferation by searching for targets implicated in this process. We identified a hitherto-unknown FBXW7-interacting protein, p53, which is phosphorylated by glycogen synthase kinase 3 at serine 33 and then ubiquitylated by SCF(FBXW7) and degraded. This ubiquitylation is carried out in normally growing cells but primarily after DNA damage. Specifically, we found that SCF(FBXW7)-specific targeting of p53 is crucial for the recovery of cell proliferation after UV-induced DNA damage. Furthermore, we observed that amplification of FBXW7 in wild-type p53 tumors reduced the survival of patients with breast cancer. These results provide a rationale for using SCF(FBXW7) inhibitors in the treatment of this subset of tumors.-Galindo-Moreno, M., Giráldez, S., Limón-Mortés, M. C., Belmonte-Fernández, A., Reed, S. I., Sáez, C., Japón, M. Á., Tortolero, M., Romero, F. SCF(FBXW7)-mediated degradation of p53 promotes cell recovery after UV-induced DNA damage.


Assuntos
Dano ao DNA/genética , Proteína 7 com Repetições F-Box-WD/genética , Proteína Supressora de Tumor p53/genética , Animais , Células COS , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Chlorocebus aethiops , Proteínas F-Box/genética , Células HCT116 , Células HEK293 , Humanos , Mutação/genética , Fosforilação/genética , Domínios Proteicos/genética , Proteólise , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética
4.
Sci Rep ; 7(1): 10078, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855742

RESUMO

Cyclin-dependent kinase 1 (CDK1) is the central mammalian regulator of cell proliferation and a promising therapeutic target for breast cancer. In fact, CDK1 inhibition downregulates survival and induces apoptosis. Due to its essential role, CDK1 expression and activity are strictly controlled at various levels. We previously described that CDK1 stability is also regulated and that SCF(ßTrCP) ubiquitinates CDK1, which is degraded via the lysosomal pathway. In addition, in breast tumors from patients, we found a negative correlation between CDK1 accumulation and ßTrCP levels, and a positive correlation with the degree of tumor malignancy. This prompted us to study the molecular mechanism involved in CDK1 clearance. In this report, we determine that both chemotherapeutic agents and proteolytic stress induce CDK1 degradation in human breast cancer MCF7 cells through p62/HDAC6-mediated selective autophagy. On the one hand, CDK1 binds to p62/SQSTM1-LC3 and, on the other hand, it interacts with HDAC6. Both complexes are dependent on the presence of an intact ßTrCP-binding motif on CDK1. Furthermore, we also show that CDK1 is recruited to aggresomes in response to proteasome inhibition for an extended period. We propose CDK1 clearance as a potential predictive biomarker of antitumor treatment efficacy.


Assuntos
Autofagia/genética , Proteína Quinase CDC2/genética , Regulação Neoplásica da Expressão Gênica , Desacetilase 6 de Histona/genética , Proteínas Ligases SKP Culina F-Box/genética , Proteína Sequestossoma-1/genética , Proteína Quinase CDC2/metabolismo , Células HEK293 , Células HeLa , Desacetilase 6 de Histona/metabolismo , Humanos , Células MCF-7 , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Estabilidade Proteica , Proteólise , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais , Ubiquitinação
5.
FASEB J ; 31(7): 2925-2936, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28360195

RESUMO

Polo-like kinase 1 (PLK1) is a serine/threonine kinase involved in several stages of the cell cycle, including the entry and exit from mitosis, and cytokinesis. Furthermore, it has an essential role in the regulation of DNA replication. Together with cyclin A, PLK1 also promotes CDH1 phosphorylation to trigger its ubiquitination and degradation, allowing cell cycle progression. The PLK1 levels in different type of tumors are very high compared to normal tissues, which is consistent with its role in promoting proliferation. Therefore, several PLK1 inhibitors have been developed and tested for the treatment of cancer. Here, we further analyzed PLK1 degradation and found that cytoplasmic PLK1 is ubiquitinated and subsequently degraded by the SCFßTrCP/proteasome. This procedure is triggered when heat shock protein (HSP) 90 is inhibited with geldanamycin, which results in misfolding of PLK1. We also identified CDK1 as the major kinase involved in this degradation. Our work shows for the first time that HSP90 inhibition arrests cell cycle progression at the G1/S transition. This novel mechanism inhibits CDH1 degradation through CDK1-dependent PLK1 destruction by the SCFßTrCP/proteasome. In these conditions, CDH1 substrates do not accumulate and cell cycle arrests, providing a novel pathway for regulation of the cell cycle at the G1-to-S boundary.-Giráldez, S., Galindo-Moreno, M., Limón-Mortés, M. C., Rivas, A. C., Herrero-Ruiz, J., Mora-Santos, M., Sáez, C., Japón, M. Á., Tortolero, M., Romero, F. G1/S phase progression is regulated by PLK1 degradation through the CDK1/ßTrCP axis.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular/fisiologia , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Animais , Proteína Quinase CDC2/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular , Clonagem Molecular , Regulação Enzimológica da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Plasmídeos , Mutação Puntual , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Técnicas do Sistema de Duplo-Híbrido , Proteínas Contendo Repetições de beta-Transducina/genética , Quinase 1 Polo-Like
6.
Front Microbiol ; 6: 396, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25972862

RESUMO

Salmonella enterica expresses two virulence-related type III secretion systems (T3SSs) encoded in Salmonella pathogenicity island 1 (SPI1) and SPI2, respectively. SseK1 is a poorly characterized substrate of the SPI2-encoded T3SS. Here, we show that this effector is essential to get full virulence both in oral and intraperitoneal mice infections, in spite of not having a role in invasion or intracellular proliferation in cultured mammalian cells. In vitro, expression of sseK1 was higher in media mimicking intracellular conditions, when SPI2 was induced, but it was also significant under SPI1 inducing conditions. A detailed analysis of translocation of SseK1 into host cells unveiled that it was a substrate of both, T3SS1 and T3SS2, although with different patterns and kinetics depending on the specific host cell type (epithelial, macrophages, or fibroblasts). The regulation of the expression of sseK1 was examined using lacZ and bioluminescent lux fusions. The two-component system PhoQ/PhoP is a positive regulator of this gene. A combination of sequence analysis, directed mutagenesis and electrophoretic mobility shift assays showed that phosphorylated PhoP binds directly to the promoter region of sseK1 and revealed a PhoP binding site located upstream of the predicted -35 hexamer of this promoter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...