Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38727398

RESUMO

Self-standing Na3MnTi(PO4)3/carbon nanofiber (CNF) electrodes are successfully synthesized by electrospinning. A pre-synthesized Na3MnTi(PO4)3 is dispersed in a polymeric solution, and the electrospun product is heat-treated at 750 °C in nitrogen flow to obtain active material/CNF electrodes. The active material loading is 10 wt%. SEM, TEM, and EDS analyses demonstrate that the Na3MnTi(PO4)3 particles are homogeneously spread into and within CNFs. The loaded Na3MnTi(PO4)3 displays the NASICON structure; compared to the pre-synthesized material, the higher sintering temperature (750 °C) used to obtain conductive CNFs leads to cell shrinkage along the a axis. The electrochemical performances are appealing compared to a tape-casted electrode appositely prepared. The self-standing electrode displays an initial discharge capacity of 124.38 mAh/g at 0.05C, completely recovered after cycling at an increasing C-rate and a coulombic efficiency ≥98%. The capacity value at 20C is 77.60 mAh/g, and the self-standing electrode exhibits good cycling performance and a capacity retention of 59.6% after 1000 cycles at 1C. Specific capacities of 33.6, 22.6, and 17.3 mAh/g are obtained by further cycling at 5C, 10C, and 20C, and the initial capacity is completely recovered after 1350 cycles. The promising capacity values and cycling performance are due to the easy electrolyte diffusion and contact with the active material, offered by the porous nature of non-woven nanofibers.

2.
Molecules ; 29(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38675544

RESUMO

Scientific and industrial reasons dictate the study of the solid state of imepitoin, a highly safe and tolerable anticonvulsant drug used in the therapy of epileptic dogs that was approved in the Europe Union in 2013. Our investigations allowed us to discover the existence of a new polymorph of imepitoin, which finds itself in a monotropic relationship with the crystalline form (polymorph I) already known and present on the market. This form (polymorph II), obtained by crystallization from xylene, remains metastable under ambient conditions for at least 1 year. Both solid forms were characterized by thermal (DSC and TGA), spectroscopic (FT-IR and Raman), microscopic (SEM and HSM), and diffractometric techniques. The thermodynamic relationship between the two polymorphs (monotropic) is such that it is not possible to study the melting of polymorph II, not even by adopting appropriate experimental strategies. Our measurements highlighted that the melting peak of imepitoin actually also includes an onset of melt decomposition. The ab initio structure solution, obtained from synchrotron X-ray powder diffraction data collected at room temperature, allowed us to determine the crystal structure of the new polymorph (II). It crystallizes in the monoclinic crystal structure, P21/c space group (#14), with a = 14.8687(6) Å, b = 7.2434(2) Å, c = 12.5592(4) Å, ß = 107.5586(8)°, V = 1289.61(8) Å3, and Z = 4.

3.
Molecules ; 29(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38675705

RESUMO

The NASICON-structured Na3MnZr(PO4)3 compound is a promising high-voltage cathode material for sodium-ion batteries (SIBs). In this study, an easy and scalable electrospinning approach was used to synthesize self-standing cathodes based on Na3MnZr(PO4)3 loaded into carbon nanofibers (CNFs). Different strategies were applied to load the active material. All the employed characterization techniques (X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), thermal gravimetric analysis (TGA), and Raman spectroscopy) confirmed the successful loading. Compared to an appositely prepared tape-cast electrode, Na3MnZr(PO4)3/CNF self-standing cathodes demonstrated an enhanced specific capacity, especially at high C-rates, thanks to the porous conducive carbon nanofiber matrix. Among the strategies applied to load Na3MnZr(PO4)3 into the CNFs, the electrospinning (vertical setting) of the polymeric solution containing pre-synthesized Na3MnZr(PO4)3 powders resulted effective in obtaining the quantitative loading of the active material and a homogeneous distribution through the sheet thickness. Notably, Na3MnZr(PO4)3 aggregates connected to the CNFs, covered their surface, and were also embedded, as demonstrated by TEM and EDS. Compared to the self-standing cathodes prepared with the horizontal setting or dip-drop coating methods, the vertical binder-free electrode exhibited the highest capacity values of 78.2, 55.7, 38.8, 22.2, 16.2, 12.8, 10.3, 9.0, and 8.5 mAh/g at C-rates of 0.05C, 0.1C, 0.2C, 0.5C, 1C, 2C, 5C, 10C, and 20C, respectively, with complete capacity retention at the end of the measurements. It also exhibited a good cycling life, compared to its tape-cast counterpart: it displayed higher capacity retention at 0.2C and 1C, and, after cycling 1000 cycles at 1C, it could be further cycled at 5C, 10C, and 20C.

4.
Nanotechnology ; 35(19)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38306966

RESUMO

A straightforward method to prepare surface enhanced Raman spectroscopy (SERS) chips containing a monolayer of silver coated gold nanostars (GNS@Ag) grafted on a glass surface is introduced. The synthetic approach is based on a seed growth method performed directly on surface, using GNS as seeds, and involving a green pathway, which only uses silver nitate, ascorbic acid and water, to grow the silver shell. The preparation was optimized to maximize signals obtaining a SERS response of one order of magnitude greater than that from the original GNS based chips, offering in the meantime good homogeneity and acceptable reproducibility. The proposed GNS@Ag SERS chips are able to detect pesticide thiram down to 20 ppb.

5.
Angew Chem Int Ed Engl ; 63(10): e202318557, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38189576

RESUMO

Chiral perovskites possess a huge applicative potential in several areas of optoelectronics and spintronics. The development of novel lead-free perovskites with tunable properties is a key topic of current research. Herein, we report a novel lead-free chiral perovskite, namely (R/S-)ClMBA2 SnI4 (ClMBA=1-(4-chlorophenyl)ethanamine) and the corresponding racemic system. ClMBA2 SnI4 samples exhibit a low band gap (2.12 eV) together with broad emission extending in the red region of the spectrum (∼1.7 eV). Chirality transfer from the organic ligand induces chiroptical activity in the 465-530 nm range. Density functional theory calculations show a Rashba type band splitting for the chiral samples and no band splitting for the racemic isomer. Self-trapped exciton formation is at the origin of the large Stokes shift in the emission. Careful correlation with analogous lead and lead-free 2D chiral perovskites confirms the role of the symmetry-breaking distortions in the inorganic layers associated with the ligands as the source of the observed chiroptical properties providing also preliminary structure-property correlation in 2D chiral perovskites.

6.
Sensors (Basel) ; 23(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38005403

RESUMO

Handly and easy-to-use optical instrumentation is very important for food safety monitoring, as it provides the possibility to assess law and health compliances at every stage of the food chain. In particular, the Surface-enhanced Raman Scattering (SERS) method appears highly promising because the intrinsic drawback of Raman spectroscopy, i.e., the natural weakness of the effect and, in turn, of the signal, is overcome thanks to the peculiar interaction between laser light and plasmonic excitations at the SERS substrate. This fact paved the way for the widespread use of SERS sensing not only for food safety but also for biomedicine, pharmaceutical process analysis, forensic science, cultural heritage and more. However, the current technological maturity of the SERS technique does not find a counterpart in the recognition of SERS as a routine method in compliance protocols. This is mainly due to the very scattered landscape of SERS substrates designed and tailored specifically for the targeted analyte. In fact, a very large variety of SERS substrates were proposed for molecular sensing in different environments and matrices. This review presents the advantages and perspectives of SERS sensing in food safety. The focus of the survey is limited to specific analytes of interest for producers, consumers and stakeholders in Oltrepò Pavese, a definite regional area that is located within the district of Pavia in the northern part of Italy. Our attention has been addressed to (i) glyphosate in rice fields, (ii) histamine in a world-famous local product (wine), (iii) tetracycline, an antibiotic often detected in waste sludges that can be dangerous, for instance in maize crops and (iv) Sudan dyes-used as adulterants-in the production of saffron and other spices, which represent niche crops for Oltrepò. The review aims to highlight the SERS performance for each analyte, with a discussion of the different methods used to prepare SERS substrates and the different reported limits of detection.


Assuntos
Inocuidade dos Alimentos , Análise Espectral Raman , Análise Espectral Raman/métodos , Corantes , Antibacterianos , Tetraciclina
7.
J Phys Chem Lett ; 14(35): 7860-7868, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37638524

RESUMO

The development of broadband emitters based on metal halide perovskites (MHPs) requires the elucidation of structure-emission property correlations. Herein, we report a combined experimental and theoretical study on a series of novel low-dimensional lead chloride perovskites, including ditopic aromatic cations. Synthesized lead chloride perovskites and their bromide analogues show both narrow and broad photoluminescence emission properties as a function of their cation and halide nature. Structural analysis shows a correlation between the rigidity of the ditopic cations and the lead halide octahedral distortions. Density functional theory calculations reveal, in turn, the pivotal role of octahedral distortions in the formation of self-trapped excitons, which are responsible for the insurgence of broad emission and large Stokes shifts together with a contribution of halide vacancies. For the considered MHP series, the use of conventional octahedral distortion parameters allows us to nicely describe the trend of emission properties, thus providing a solid guide for further materials design.

8.
Nanomaterials (Basel) ; 13(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37049252

RESUMO

ZnS-graphene composites (ZnSGO) were synthesized by a hydrothermal process and loaded onto carbon nanofibers (CNFs) by electrospinning (ZnS-GO/CNF), to obtain self-standing anodes for SIBs. The characterization techniques (XRPD, SEM, TEM, EDS, TGA, and Raman spectroscopy) confirm that the ZnS nanocrystals (10 nm) with sphalerite structure covered by the graphene sheets were successfully synthesized. In the ZnS-GO/CNF anodes, the active material is homogeneously dispersed in the CNFs' matrix and the ordered carbon source mainly resides in the graphene component. Two self-standing ZnS-GO/CNF anodes (active material amount: 11.3 and 24.9 wt%) were electrochemically tested and compared to a tape-casted ZnS-GO example prepared by conventional methods (active material amount: 70 wt%). The results demonstrate improved specific capacity at high C-rate for the free-standing anodes compared to the tape-casted example (69.93 and 92.59 mAh g-1 at 5 C for 11.3 and 24.9 wt% free-standing anodes, respectively, vs. 50 mAh g-1 for tape-casted). The 24.9 wt% ZnS-GO/CNF anode gives the best cycling performances: we obtained capacities of 255-400 mAh g-1 for 200 cycles and coulombic efficiencies ≥ 99% at 0.5 C, and of 80-90 mAh g-1 for additional 50 cycles at 5 C. The results suggest that self-standing electrodes with improved electrochemical performances at high C-rates can be prepared by a feasible and simple strategy: ex situ synthesis of the active material and addition to the carbon precursor for electrospinning.

9.
Nanomaterials (Basel) ; 12(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36296798

RESUMO

Surface-enhanced Raman scattering (SERS) is becoming widely used as an analytical tool, and the search for stable and highly responsive SERS substrates able to give ultralow detection of pollutants is a current challenge. In this paper we boosted the SERS response of Gold nanostars (GNS) demonstrating that their coating with a layer of silver having a proper thickness produces a 7-fold increase in SERS signals. Glass supported monolayers of these GNS@Ag were then prepared using simple alcoxyliane chemistry, yielding efficient and reproducible SERS chips, which were tested for the detection of molecules representative of different classes of pollutants. Among them, norfloxacin was detected down to 3 ppb, which is one of the lowest limits of detection obtained with this technique for the analyte.

10.
Materials (Basel) ; 15(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35160864

RESUMO

Low-cost and simple methods are constantly chased in order to produce less expensive lithium-ion batteries (LIBs) while possibly increasing the energy and power density as well as the volumetric capacity in order to boost a rapid decarbonization of the transport sector. Li alloys and tin-carbon composites are promising candidates as anode materials for LIBs both in terms of capacity and cycle life. In the present paper, electrospinning was employed in the preparation of Sn/SnOx@C composites, where tin and tin oxides were homogeneously dispersed in a carbonaceous matrix of carbon nanofibers. The resulting self-standing and light electrode showed a greatly enhanced performance compared to a conventional electrode based on the same starting materials that are simply mixed to obtain a slurry then deposited on a Cu foil. Fast kinetics were achieved with more than 90% of the reaction that resulted being surface-controlled, and stable capacities of about 300 mAh/g over 500 cycles were obtained at a current density of 0.5 A/g.

11.
Inorg Chem ; 60(18): 14142-14150, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34472341

RESUMO

Crystalline films of lead-free all-inorganic Cs3Bi2X9 (X = Br, I) perovskites have been deposited by radio frequency (RF)-magnetron sputtering providing high-quality, single-phase films as confirmed by structural, morphological, and optical property characterization. Progressive tuning of crystal structure characteristics and optical absorbance has been achieved in mixed Br/I phases Cs3Bi2(I1-xBrx)9 (0 ≤ x ≤ 1), highlighting a shift of the band gap from about 2.0 eV for Cs3Bi2I9 to 2.64 eV for Cs3Bi2Br9. X-ray diffraction and Raman scattering allowed defining the range of alloyed compositions where single-phase compositions are found. Finally, preliminary photocatalytic activity tests on the degradation of methylene blue provided solid data indicating the future possible exploitation of Bi-based perovskite derivative materials as active photocatalysts.

12.
Materials (Basel) ; 14(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073496

RESUMO

Spinel phases, with unique and outstanding physical properties, are attracting a great deal of interest in many fields. In particular, MgFe2O4, a partially inverted spinel phase, could find applications in medicine thanks to the remarkable antibacterial properties attributed to the generation of reactive oxygen species. In this paper, undoped and Ag-doped MgFe2-xAgxO4 (x = 0.1 and 0.3) nanoparticles were prepared using microwave-assisted combustion and sol-gel methods. X-ray powder diffraction, with Rietveld structural refinements combined with micro-Raman spectroscopy, allowed to determine sample purity and the inversion degree of the spinel, passing from about 0.4 to 0.7 when Ag was introduced as dopant. The results are discussed in view of the antibacterial activity towards Escherichia coli and Staphylococcus aureus, representative strains of Gram-negative and Gram-positive bacteria. The sol-gel particles were more efficient towards the chosen bacteria, possibly thanks to the nanometric sizes of metallic silver, which were well distributed in the powders and in the spinel phase, with respect to microwave ones, that, however, acquired antibacterial activity after thermal treatment, probably due to the nucleation of hematite, itself displaying well-known antibacterial properties and which could synergistically act with silver and spinel.

13.
Materials (Basel) ; 13(22)2020 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33266359

RESUMO

The osseointegration of titanium implants is allowed by the TiO2 layer that covers the implants. Titania can exist in amorphous form or in three different crystalline conformations: anatase, rutile and brookite. Few studies have characterized TiO2 covering the surface of dental implants from the crystalline point of view. The aim of the present study was to characterize the evolution of the TiO2 layer following different surface treatments from a crystallographic point of view. Commercially pure titanium and Ti-6Al-4V implants subjected to different surface treatments were analyzed by Raman spectroscopy to evaluate the crystalline conformation of titania. The surface treatments evaluated were: machining, sandblasting, sandblasting and etching and sandblasting, etching and anodization. The anodizing treatment evaluated in this study allowed to obtain anatase on commercially pure titanium implants without altering the morphological characteristics of the surface.

14.
Nanomaterials (Basel) ; 9(9)2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505833

RESUMO

The adhesion and proliferation of bacteria on abiotic surfaces pose challenges in both health care and industrial applications. Gold nanostars (GNSs) monolayers grafted on glass have demonstrated to exert antibacterial action due to their photo-thermal features. Here, these GNS layers were further functionalized using thiols monolayers, in order to impart different wettability to the surfaces and thus adding a feature that could help to fight bacterial proliferation. Thiol that has different functional groups was used and the thiol-protected surfaces were characterized by means of UV-vis spectroscopy, contact angles, SEM and surface enhanced Raman spectroscopy (SERS). We verified that (i) coating with the proper thiol allows us to impart high hydrophilicity or hydrophobicity to the surfaces (with contact angle values ranging from 10 to 120°); (ii) GNS monolayers are strongly stabilized by functionalization with thiols, with shelf stability increasing from a few weeks to more than three months and (iii) photo-thermal features and subsequent antibacterial effects caused by hyperthermia are not changed by thiols layers, allowing us to kill at least 99.99% of representative bacterial strains.

15.
Chem Commun (Camb) ; 54(94): 13212-13215, 2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30406251

RESUMO

In the present work, we show a successful approach to achieve stable structural and optical changes induced by pressure on bulk amounts of MAPI after pressure release. Such effects on the optical properties resemble those achieved in situ (e.g., in diamond anvil cells) but are retained and stabilized under ambient conditions thanks to a partial quenching of the high-pressure state.

16.
Dalton Trans ; 47(44): 15816-15826, 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30357185

RESUMO

FeNb11O29 is an intriguing and promising material that has been emerging in the last few years. It is isostructural with Nb12O29, one of the rare compounds in which Nb displays a local magnetic moment and shows both antiferromagnetic ordering and metallic conductivity at low temperatures. Both the two polymorphic monoclinic and orthorhombic forms have a mono-dimensional magnetic arrangement, but the different disposition of the structural building blocks leads to a strong frustration phenomenon of the magnetic order in the high-temperature orthorhombic form. Whereas Nb12O29 has been widely studied, barely few magnetic data can be found on its analogous FeNb11O29, for which a role of the Fe3+ localized d electrons in affecting the original magnetic behaviour can be foreseen. In this paper, we report how we synthesized undoped and, for the first time, Mn- and V-doped FeNb11O29. Both the monoclinic and orthorhombic polymorphs, stable in different temperature ranges, were then thoroughly structurally characterized. With the help of micro-Raman spectroscopy, we investigated the differences introduced into the vibrational levels by doping, while EPR data allowed us to obtain information on the transition metal ions and to point out the related peculiar structural features. Static magnetization measurements evidenced the paramagnetic character of the compounds and the high-spin configuration of Fe3+ ions.

17.
Dentomaxillofac Radiol ; 47(7): 20170467, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29916727

RESUMO

OBJECTIVES:: To evaluate the geometric distortion of tilting of mandibular third molars with respect to second molars on panoramic reconstruction. METHODS:: Cone-beam CT (CBCT) reconstructions of 160 third molars, obtained due to an indication of risk of inferior alveolar nerve damage during surgery, were used. CBCT-reconstructed panoramic images were used as bi-dimensional (2D) images, to avoid distortions other than geometric distortions. The angle between the second and the third molar was measured in 2D and three-dimensional (3D) images. Student's t-test was used to assess the null-hypothesis of no difference between 2D and 3D measurements. RESULTS:: A significant mean difference (-2.3° ± 6.3°) between 2D and 3D measurements was found, with an absolute error of 3.6° ± 5.7° and a relative error of 10%. These findings comprehensively explain the geometric distortion on panoramic radiographs. CONCLUSIONS:: Although a widely used and undoubtedly useful tool for diagnosis and surgical planning of mandibular third molar extractions, panoramic reconstruction are biased from geometric distortion that may influence surgical planning.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Dente Serotino , Dente Impactado , Estudos Transversais , Humanos , Mandíbula , Dente Serotino/diagnóstico por imagem , Radiografia Panorâmica , Dente Impactado/diagnóstico por imagem
18.
Dalton Trans ; 42(28): 10282-91, 2013 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-23736525

RESUMO

Encapsulated Fe3O4 nanoparticles of average diameters d = 12 nm are obtained by coprecipitation, in the presence of 2-methoxyethanol hemiester of poly(maleic anhydride-alt-butyl vinyl ether) 5% grafted with poly(ethylene glycol) (VP-MAG nanoparticles). A complete characterization of nude and encapsulated nanoparticles through structural techniques (namely XRD, TEM, SEM), Raman spectroscopy and magnetic measurements has been performed. These nanoparticles compared with commercial compounds (ENDOREM®) present superparamagnetic behavior and nuclear relaxivities that make them promising as magnetic resonance imaging (MRI) contrast agents (CAs). We found that our nanostructures exhibit r2 relaxivity higher than those of commercial CAs over the whole frequency range. The MRI efficiency of our samples was related to their microstructural and magnetic properties.


Assuntos
Nanopartículas de Magnetita/química , Esterificação , Éteres/química , Etilenoglicóis/química , Fenômenos Magnéticos , Nanopartículas de Magnetita/ultraestrutura , Anidridos Maleicos/química , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Polietilenoglicóis/química , Polímeros/química , Análise Espectral Raman , Compostos de Vinila/química , Difração de Raios X
19.
Analyst ; 138(13): 3778-85, 2013 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-23678482

RESUMO

Multi-walled carbon nanotubes (MWCNTs) were grafted for the first time by γ-radiation onto silica microspheres in the presence of polybutadiene (PB) as the linking agent, obtaining a novel hybrid material with chromatographic properties, with an alternative approach to the existing procedures. The synthesis involves the one-pot γ-radiation-induced grafting of MWCNTs onto silica microspheres in the presence of PB as a linking agent. PB also serves as a coating layer of the silica particles, to which MWCNTs are anchored through stable chemical bonds formed via radical chain reaction with the polymer. The product (MWCNT-PB-modified silica) resulted in MWCNT bundles interlaying the silica particles which acted as a support and as a spacer. This new material highlights the unquestionable properties of CNTs also when grafted in a composite, thus allowing the disposition of a more robust material whose properties are still related to the nanotube structure. The grafting was confirmed by Raman spectroscopy. The surface area, determined by BET isotherms, resulted in 132 m(2) g(-1), about 34% lower than that of pure silica, pointing to the cross-linking effect of PB in the silica matrix. The evaluation of MWCNT-PB-modified silica as a LC stationary phase was performed by separation of aromatics, with satisfactory resolution and reproducibility, while structural selectivity was proved by isomer separation. A good resolution was obtained also for acid/basic compounds as barbiturates. A comparison with a commercial C18 sorbent highlighted the advantage in using the CNT column for separating aromatic hydrocarbons. Control experiments on the PB-coated silica column proved the key role of MWCNTs in the chromatographic performance.

20.
Nanotechnology ; 23(4): 045102, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22214787

RESUMO

Nanoparticles for biomedical use must be cytocompatible with the biological environment that they are exposed to. Current research has focused on the surface functionalization of nanoparticles by using proteins, polymers, thiols and other organic compounds. Here we show that inorganic nanoparticles such as titanium oxide can be coated by pyrolytic carbon (PyC) and that the coating has cytocompatible properties. Pyrolization and condensation of methane formed a thin layer of pyrolytic carbon on the titanium oxide core. The formation of the PyC shell retards coalescence and sintering of the ceramic phase. Our MTT assay shows that the PyC-coated particles are cytocompatible at employed doses.


Assuntos
Tecnologia Biomédica/métodos , Carbono/química , Materiais Revestidos Biocompatíveis/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Nanopartículas/química , Temperatura , Titânio/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular , Metano/análise , Camundongos , Nanopartículas/ultraestrutura , Análise Espectral Raman , Termogravimetria , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...