Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem ; 15(11): 1607-1615, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37563326

RESUMO

The photoisomerization reaction of a fluorescent protein chromophore occurs on the ultrafast timescale. The structural dynamics that result from femtosecond optical excitation have contributions from vibrational and electronic processes and from reaction dynamics that involve the crossing through a conical intersection. The creation and progression of the ultrafast structural dynamics strongly depends on optical and molecular parameters. When using X-ray crystallography as a probe of ultrafast dynamics, the origin of the observed nuclear motions is not known. Now, high-resolution pump-probe X-ray crystallography reveals complex sub-ångström, ultrafast motions and hydrogen-bonding rearrangements in the active site of a fluorescent protein. However, we demonstrate that the measured motions are not part of the photoisomerization reaction but instead arise from impulsively driven coherent vibrational processes in the electronic ground state. A coherent-control experiment using a two-colour and two-pulse optical excitation strongly amplifies the X-ray crystallographic difference density, while it fully depletes the photoisomerization process. A coherent control mechanism was tested and confirmed the wave packets assignment.


Assuntos
Rodopsina , Vibração , Movimento (Física) , Ligação de Hidrogênio
2.
Phys Rev Lett ; 125(7): 073203, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32857563

RESUMO

Free-electron lasers provide a source of x-ray pulses short enough and intense enough to drive nonlinearities in molecular systems. Impulsive interactions driven by these x-ray pulses provide a way to create and probe valence electron motions with high temporal and spatial resolution. Observing these electronic motions is crucial to understand the role of electronic coherence in chemical processes. A simple nonlinear technique for probing electronic motion, impulsive stimulated x-ray Raman scattering (ISXRS), involves a single impulsive interaction to produce a coherent superposition of electronic states. We demonstrate electronic population transfer via ISXRS using broad bandwidth (5.5 eV full width at half maximum) attosecond x-ray pulses produced by the Linac Coherent Light Source. The impulsive excitation is resonantly enhanced by the oxygen 1s→2π^{*} resonance of nitric oxide (NO), and excited state neutral molecules are probed with a time-delayed UV laser pulse.

3.
Nanoscale Adv ; 1(10): 4041-4051, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36132097

RESUMO

We achieved sputter deposition of silver atoms onto liquid alcohols by injection of solvents into vacuum via a liquid microjet. Mixing silver atoms into ethanol by this method produced metallic silver nanoparticles. These had a broad, log-normal size distribution, with median size between 3.3 ± 1.4 nm and 2.0 ± 0.7 nm, depending on experiment geometry; and a broad plasmon absorption band centred around 450 nm. We also deposited silver atoms into a solution of colloidal silica nanoparticles, generating silver-decorated silica particles with consistent decoration of almost one silver particle to each silica sphere. The silver-silica mixture showed increased colloidal stability and yield of silver, along with a narrowed size distribution and a narrower plasmon band blue-shifted to 410 nm. Significant methanol loss of 1.65 × 10-7 mol MeOH per g per s from the mature silver-silica solutions suggests we have reproduced known silica supported silver catalysts. The excellent distribution of silver on each silica sphere shows this technique has potential to improve the distribution of catalytically active particles in supported catalysts.

4.
Rev Sci Instrum ; 88(8): 083117, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28863712

RESUMO

Thin liquid sheet jet flows in vacuum provide a new platform for performing experiments in the liquid phase, for example X-ray spectroscopy. Micrometer thickness, high stability, and optical flatness are the key characteristics required for successful exploitation of these targets. A novel strategy for generating sheet jets in vacuum is presented in this article. Precision nozzles were designed and fabricated using high resolution (0.2 µm) 2-photon 3D printing and generated 1.49 ± 0.04 µm thickness, stable, and <λ/20-flat jets in isopropanol under normal atmosphere and under vacuum at 5 × 10-1 mbar. The thin sheet technology also holds great promise for advancing the fields of high harmonic generation in liquids, laser acceleration of ions as well as other fields requiring precision and high repetition rate targets.

5.
Faraday Discuss ; 171: 195-218, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25415646

RESUMO

We show that rotational line spectra of molecular clusters with near zero permanent dipole moments can be observed using impulsive alignment. Aligned rotational wavepackets were generated by non-resonant interaction with intense femtosecond laser pump pulses and then probed using Coulomb explosion by a second, time-delayed femtosecond laser pulse. By means of a Fourier transform a rich spectrum of rotational eigenstates was derived. For the smallest cluster, C(2)H(2)-He, we were able to establish essentially all rotational eigenstates up to the dissociation threshold on the basis of theoretical level predictions. The C(2)H(2)-He complex is found to exhibit distinct features of large amplitude motion and very early onset of free internal rotor energy level structure.

6.
Phys Rev Lett ; 113(4): 043004, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-25105616

RESUMO

Rotational wave packets of the weakly bound C(2)H(2)-He complex have been created using impulsive alignment. The coherent rotational dynamics were monitored for 600 ps enabling extraction of a frequency spectrum showing multiple rotational energy levels up to J = 4. spectrum has been combined with ab initio calculations to show that the complex has a highly delocalized structure and is bound only by ca. 7 cm(-1). The experiments demonstrate how highly featured rotational spectra can be obtained from an extremely cold environment where only the lowest rotational energy states are initially populated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...