Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-518117

RESUMO

Emerging SARS-CoV-2 variants with antigenic changes in the spike protein are neutralized less efficiently by serum antibodies elicited by legacy vaccines against the ancestral Wuhan-1 virus. Nonetheless, these vaccines, including mRNA-1273 and BNT162b2, retained their ability to protect against severe disease and death, suggesting that other aspects of immunity control infection in the lung. Although vaccine-elicited antibodies can bind Fc gamma receptors (Fc{gamma}Rs) and mediate effector functions against SARS-CoV-2 variants, and this property correlates with improved clinical COVID-19 outcome, a causal relationship between Fc effector functions and vaccine-mediated protection against infection has not been established. Here, using passive and active immunization approaches in wild-type and Fc-gamma receptor (Fc{gamma}R) KO mice, we determined the requirement for Fc effector functions to protect against SARS-CoV-2 infection. The antiviral activity of passively transferred immune serum was lost against multiple SARS-CoV-2 strains in mice lacking expression of activating Fc{gamma}Rs, especially murine Fc{gamma}R III (CD16), or depleted of alveolar macrophages. After immunization with the preclinical mRNA-1273 vaccine, protection against Omicron BA.5 infection in the respiratory tract also was lost in mice lacking Fc{gamma}R III. Our passive and active immunization studies in mice suggest that Fc-Fc{gamma}R engagement and alveolar macrophages are required for vaccine-induced antibody-mediated protection against infection by antigenically changed SARS-CoV-2 variants, including Omicron strains.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22282030

RESUMO

Coronavirus disease 2019 (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global public health emergency. Although SARS-CoV-2 is primarily a respiratory pathogen, extra-respiratory organs, including the central nervous system (CNS), can also be affected. Neurologic symptoms have been observed not only during acute SARS-CoV-2 infection, but also at distance from respiratory disease, also known as long-COVID or neurological post-acute sequelae of COVID-19 (neuroPASC). The pathogenesis of neuroPASC is not well understood, but hypotheses include SARS-CoV-2-induced immune dysfunctions, hormonal dysregulations, and persistence of SARS-CoV-2 reservoirs. In this study, we used a high throughput systems serology approach to dissect the humoral response to SARS-CoV-2 (and other common Coronaviruses - 229E, HKU1, NL63, OC43) in the serum and cerebrospinal fluid (CSF) from 112 infected individuals who developed or did not develop neuroPASC. Unique SARS-CoV-2 humoral profiles were observed in the CSF of neuroPASC. All antibody isotypes (IgA, IgM, IgA) and subclasses (IgA1-2; IgG1-4) were detected in serum, whereas CSF was characterized by focused IgG1 (and absence of IgM). These data argue in favor of compartmentalized brain-specific responses against SARS-CoV-2 through selective transfer of antibodies from the serum to the CSF across the blood-brain-barrier, rather than intrathecal synthesis, where more diversity in antibody classes/subclasses would be expected. Moreover, compared to individuals who did not develop post-acute neurological complications following infection (n=94), those with neuroPASC (n=18) exhibited attenuated systemic antibody responses against SARS-CoV-2, characterized by decreased capacity to activate antibody-dependent complement deposition (ADCD), NK cell activation (ADNKA) and to bind Fc{gamma} receptors. However, surprisingly, neuroPASC showed significantly expanded antibody responses to other common Coronaviruses, including 229E, HKU1, NL63, and OC43. This biased humoral activation across coronaviruses was particularly enriched in neuroPASC individuals with poor outcome, suggesting an original antigenic sin (or immunologic imprinting), where pre-existing immune responses against related viruses shape the response to current infection, as a key prognostic marker of neuroPASC disease. Overall, these findings point to a pathogenic role for compromised anti-SARS-CoV-2 responses in the CSF, likely resulting in incomplete virus clearance from the brain and persistent neuroinflammation, in the development of post-acute neurologic complications of SARS-CoV-2 infection.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-518175

RESUMO

Two group 2B {beta}-coronaviruses (sarbecoviruses) have caused regional and global epidemics in modern history. The mechanisms of cross protection driven by the sarbecovirus spike, a dominant immunogen, are less clear yet critically important for pan-sarbecovirus vaccine development. We evaluated the mechanisms of cross-sarbecovirus protective immunity using a panel of alphavirus-vectored vaccines covering bat to human strains. While vaccination did not prevent virus replication, it protected against lethal heterologous disease outcomes in both SARS-CoV-2 and clade 2 bat sarbecovirus HKU3-SRBD challenge models. The spike vaccines tested primarily elicited a highly S1-specific homologous neutralizing antibody response with no detectable cross-virus neutralization. We found non-neutralizing antibody functions that mediated cross protection in wild-type mice were mechanistically linked to FcgR4 and spike S2-binding antibodies. Protection was lost in FcR knockout mice, further supporting a model for non-neutralizing, protective antibodies. These data highlight the importance of FcR-mediated cross-protective immune responses in universal pan-sarbecovirus vaccine designs.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22280335

RESUMO

Beyond the unpredictable acute illness caused by SARS-CoV-2, one-fifth of infections unpredictably result in long-term persistence of symptoms despite the apparent clearance of infection. Insights into the mechanisms that underlie post-acute sequelae of COVID-19 (PASC) will be critical for the prevention and clinical management of long-term complications of COVID-19. Several hypotheses have been proposed that may account for the development of PASC, including persistence of virus or the dysregulation of immunity. Among the immunological changes noted in PASC, alterations in humoral immunity have been observed in some patient subsets. To begin to determine whether SARS-CoV-2 or other pathogen specific humoral immune responses evolve uniquely in PASC, we performed comprehensive antibody profiling against SARS-CoV-2 and a panel of endemic pathogens or routine vaccine antigens using Systems Serology in a cohort of patients with pre-existing rheumatic disease who either developed or did not develop PASC. A distinct humoral immune response was observed in individuals with PASC. Specifically, individuals with PASC harbored less inflamed and weaker Fc{gamma} receptor binding anti-SARS-CoV-2 antibodies and a significantly expanded and more inflamed antibody response against endemic Coronavirus OC43. Individuals with PASC, further, generated more avid IgM responses and developed an expanded inflammatory OC43 S2-specific Fc-receptor binding response, linked to cross reactivity across SARS-CoV-2 and common coronaviruses. These findings implicate previous common Coronavirus imprinting as a marker for the development of PASC. One Sentence SummaryThrough high dimensional humoral immune profiling we uncovered the potential importance of previous common Coronavirus imprinting as a novel marker and potential mechanism of an endotype of PASC.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22279787

RESUMO

BackgroundEvaluating the performance of SARS-CoV-2 serological assays and clearly articulating the utility of selected antigen, isotypes and thresholds is crucial to understanding the prevalence of infection within selected communities. MethodsThis cross-sectional study, implemented in 2020, screened PCR-confirmed COVID-19 patients (n=86), banked pre-pandemic and negative donors (n=96), health care workers and family members (n=552), and university employees (n=327) for anti-SARS-CoV-2 receptor-binding domain (RBD), trimeric spike protein (S), and nucleocapsid protein (N) IgG and IgA antibodies with a laboratory developed Enzyme-Linked Immunosorbent Assay (ELISA) and tested how antigen, isotype and threshold choices affected the seroprevalence. The following threshold methods were evaluated: (i) mean + 3 standard deviations of the negative controls; (ii) 100% specificity for each antigen/isotype combination; and (iii) the maximal Youden index. ResultsWe found vastly different seroprevalence estimates depending on selected antigens, isotypes and the applied threshold method, ranging from 0.0% to 85.4%. Subsequently, we maximized specificity and reported a seroprevalence, based on more than one antigen, ranging from 9.3% to 25.9%. ConclusionsThis study revealed the importance of evaluating serosurvey tools for antigen, isotype, and threshold-specific sensitivity and specificity, in order to interpret qualitative serosurvey outcomes reliably and consistently across studies.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-501163

RESUMO

Since the emergence of the SARS-CoV-2 virus, we have witnessed a revolution in vaccine development with the rapid emergence and deployment of both traditional and novel vaccine platforms. The inactivated CoronaVac vaccine and the mRNA-based Pfizer/BNT162b2 vaccine are among the most widely distributed vaccines, both demonstrating high, albeit variable, vaccine effectiveness against severe COVID-19 over time. Beyond the ability of the vaccines to generate neutralizing antibodies, antibodies can attenuate disease via their ability to recruit the cytotoxic and opsinophagocytic functions of the immune response. However, whether Fc-effector functions are induced differentially, wane with different kinetics, and are boostable, remains unknown. Here, using systems serology, we profiled the Fc-effector profiles induced by the CoronaVac and BNT162b2 vaccines, over time. Despite the significantly higher antibody functional responses induced by the BNT162b2 vaccine, CoronaVac responses waned more slowly, albeit still found at levels below those present in the systemic circulation of BNT162b2 immunized individuals. However, mRNA boosting of the CoronaVac vaccine responses resulted in the induction of significantly higher peak antibody functional responses with increased humoral breadth, including to Omicron. Collectively, the data presented here point to striking differences in vaccine platform-induced functional humoral immune responses, that wane with different kinetics, and can be functionally rescued and expanded with boosting.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22276786

RESUMO

The COVID-19 pandemic catalyzed a revolution in vaccine development, leading to the testing and approval of several global vaccine platforms that have shown tremendous promise in curbing the pandemic. Yet, despite these successes, waning immunity, and the emergence of variants of concern linked to rising breakthrough infections among vaccinees, have begun to highlight opportunities to improve vaccine platforms and deployment. Real-world vaccine efficacy has highlighted the reduced risk of breakthrough infection and disease among individuals infected and vaccinated, otherwise referred to as hybrid immunity. Hybrid immunity points to the potential for more vigorous or distinct immunity primed by the infection and may confer enhanced protection from COVID-19. Beyond augmented hybrid induced neutralizing antibody and T cell immune responses, here we sought to define whether hybrid immunity may shape the functional humoral immune response to SARS-CoV-2 following Pfizer/BNT162b2 and Moderna mRNA1273 mRNA-based, and ChadOx1/AZ1222 and Ad26.COV2.S vector-based SARS-CoV-2 vaccination. Each vaccine exhibited a unique functional humoral immune profile in the setting of naive or hybrid immunity. However, hybrid immunity showed a unique augmentation in S2-domain specific functional humoral immunity that was poorly induced in the setting of naive immune response. These data highlight the immunodominant effect of the S1-domain in the setting of natural immunity, which is highly variable during viral evolution, and the importance of natural infection in breaking this immunodominance in driving immunity to the S2 region of the SARS-CoV-2 S2 domain that is more conserved across variants of concern.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-496718

RESUMO

While immune correlates against SARS-CoV-2 are typically defined at peak immunogenicity following vaccination, immunologic responses that expand selectively during the anamnestic response following infection can provide mechanistic and detailed insights into the immune mechanisms of protection. Moreover, whether anamnestic correlates are conserved across VoCs, including the Delta and more distant Omicron variant of concern (VoC), remains unclear. To define the anamnestic correlates of immunity, across VOCs, we deeply profiled the humoral immune response in individuals recently infected with either the Delta or Omicron VoC. While limited acute N-terminal domain and RBD-specific immune expansion was observed following breakthrough, a significant immunodominant expansion of opsinophagocytic Spike-specific antibody responses focused largely on the conserved S2-domain of SARS-CoV-2 was observed 1 week after breakthrough infection. This S2-specific functional humoral response continued to evolve over 2-3 weeks following both Delta and Omicron breakthrough infection, targeting multiple VoCs and common coronaviruses. These responses were focused largely on the fusion peptide 2 and heptad repeat 1, both associated with enhanced rates of viral clearance. Taken together, our results point to a critical role of highly conserved, functional S2-specific responses in the control of SARS-CoV-2 infection, across VOCs, and thus humoral response linked to virus attenuation can guide next-generation generation vaccine boosting approaches to confer broad protection against future SARS-CoV-2 VoCs.

9.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-495727

RESUMO

Despite the robust immunogenicity of SARS-CoV-2 mRNA vaccines, emerging data reveal enhanced neutralizing antibody and T cell cross-reactivity among individuals that previously experienced COVID-19, pointing to a hybrid immune advantage with infection-associated immune priming. Beyond neutralizing antibodies and T cell immunity, mounting data point to a potential role for additional antibody effector functions, including opsinophagocytic activity, in the resolution of symptomatic COVID-19. Whether hybrid immunity modifies the Fc-effector profile of the mRNA vaccine-induced immune response remains incompletely understood. Thus, here we profiled the SARS-CoV-2 specific humoral immune response in a group of individuals with and without prior COVID-19. As expected, hybrid Spike-specific antibody titers were enhanced following the primary dose of the mRNA vaccine, but were similar to those achieved by naive vaccinees after the second mRNA vaccine dose. Conversely, Spike-specific vaccine-induced Fc-receptor binding antibody levels were higher after the primary immunization in individuals with prior COVID-19, and remained higher following the second dose compared to naive individuals, suggestive of a selective improvement in the quality, rather than the quantity, of the hybrid humoral immune response. Thus, while the magnitude of antibody titers alone may suggest that any two antigen exposures - either hybrid immunity or two doses of vaccine alone - represent a comparable prime/boost immunologic education, we find that hybrid immunity offers a qualitatively improved antibody response able to better leverage Fc effector functions against conserved regions of the virus.

10.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22276401

RESUMO

The diagnosis and management of post-acute sequelae of COVID-19 (PASC) poses an ongoing medical challenge. Identifying biomarkers associated with PASC would immensely improve the classification of PASC patients and provide the means to evaluate treatment strategies. We analyzed plasma samples collected from a cohort of PASC and COVID-19 patients (n = 63) to quantify circulating viral antigens and inflammatory markers. Strikingly, we detect SARS-CoV-2 spike antigen in a majority of PASC patients up to 12 months post-diagnosis, suggesting the presence of an active persistent SARS-CoV-2 viral reservoir. Furthermore, temporal antigen profiles for many patients show the presence of spike at multiple time points over several months, highlighting the potential utility of the SARS-CoV-2 full spike protein as a biomarker for PASC.

11.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22275283

RESUMO

Currently available mRNA vaccines are extremely safe and effective to prevent severe SARS-CoV-2 infections. However, the emergence of novel variants of concerns has highlighted the importance of high population-based vaccine rates to effectively suppress viral transmission and breakthrough infections. While initially left out from vaccine efforts, children have become one of the most affected age groups and are key targets to stop community and household spread. Antibodies are central for vaccine induced protection and emerging data points to the importance of additional Fc effector functions like opsononophagocytosis or cytotoxicity, particularly in the context of variants of concern that escape neutralizing antibodies. Here, we observed delayed induction and reduced magnitude of vaccine induced antibody titers in children 5-11 years receiving two doses of the age recommended 10 g dose of the Pfizer SARS-CoV-2 BNT162b2 vaccine compared to adolescents (12-15 years) or adults receiving the 30 g dose. Conversely, children mounted equivalent or more robust neutralization and opsonophagocytic functions at peak immunogenicity, pointing to a qualitatively more robust humoral functional response in children. Moreover, broad cross-variants of concern responses were observed across children, with enhanced IgM and parallel IgG cross-reactivity to variants of concern (VOCs) in children compared to adults. Collectively, these data argue that despite the lower magnitude of the BNT162b2 induced antibody response in children, vaccine induced immunity in children target VOCs broadly and exhibit enhanced functionality that may contribute to attenuation of disease.

12.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22275154

RESUMO

BACKGROUNDWhile emerging data during the SARS-CoV-2 pandemic have demonstrated robust mRNA vaccine-induced immunogenicity across populations, including pregnant and lactating individuals, the rapid waning of vaccine-induced immunity and the emergence of variants of concern motivated the use of mRNA vaccine booster doses. Whether all populations, including pregnant and lactating individuals, will mount a comparable response to a booster dose is not known. OBJECTIVEWe sought to profile the humoral immune response to a COVID-19 mRNA booster dose in a cohort of pregnant, lactating, and age-matched nonpregnant women. STUDY DESIGNWe characterized the antibody response against ancestral Spike and Omicron in a cohort of 31 pregnant, 12 lactating and 20 nonpregnant age-matched controls who received a BNT162b2 or mRNA-1273 booster dose after primary COVID-19 vaccination. We also examined the vaccine-induced antibody profiles of 15 maternal:cord dyads at delivery. RESULTSReceipt of a booster dose during pregnancy resulted in increased IgG1 against Omicron Spike (post-primary vaccination vs post-booster, p = 0.03). Pregnant and lactating individuals exhibited equivalent Spike-specific total IgG1, IgM and IgA levels and neutralizing titers against Omicron compared to nonpregnant women. Subtle differences in Fc-receptor binding and antibody subclass profiles were observed in the immune response to a booster dose in pregnant compared to nonpregnant individuals. Analysis of maternal and cord antibody profiles at delivery demonstrated equivalent total Spike-specific IgG1 in maternal and cord blood, yet higher Spike-specific Fc{gamma}R3a-binding antibodies in the cord relative to maternal blood (p = 0.002), consistent with preferential transfer of highly functional IgG. Spike-specific IgG1 levels in the cord were positively correlated with time elapsed since receipt of the booster dose (Spearman R 0.574, p = 0.035). CONCLUSIONSThese data suggest that receipt of a booster dose during pregnancy induces a robust Spike-specific humoral immune response, including against Omicron. If boosting occurs in the third trimester, higher Spike-specific cord IgG1 levels are achieved with greater time elapsed between receipt of the booster and delivery. Receipt of a booster dose has the potential to augment maternal and neonatal immunity.

13.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22271230

RESUMO

COVID-19 convalescent plasma (CCP), a passive polyclonal antibody therapeutic, has exhibited mixed results in the treatment of COVID-19. Given that the therapeutic effect of CCP may extend beyond the ability of SARS-CoV-2-specific antibody binding and neutralization to influence the evolution of the endogenous antibody response, we took a systematic and comprehensive approach to analyze SARS-CoV-2 functional antibody profiles of participants in a randomized controlled trial of CCP treatment of individuals hospitalized with COVID-19 pneumonia where CCP was associated with both decreased mortality and improved clinical severity. Using systems serology, we found that the clinical benefit of CCP is related to a shift towards reduced inflammatory Spike (S) responses and enhanced Nucleocapsid (N) humoral responses. We found CCP had the greatest clinical benefit in participants with low pre-existing anti-SARS-CoV-2 antibody function, rather than S or N antibody levels or participant demographic features. Further, CCP induced immunomodulatory changes to recipient humoral profiles persisted for at least two months, marked by the selective evolution of anti-inflammatory Fc-glycan profiles and persistently expanded nucleocapsid-specific humoral immunity following CCP therapy. Together, our findings identify a novel mechanism of action of CCP, suggest optimal patient characteristics for CCP treatment, identify long-last immunomodulatory effects of CCP, and provide guidance for development of novel N-focused antibody therapeutics for severe COVID-19 hyperinflammation.

14.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22269848

RESUMO

Patients with primary antibody deficiency syndromes (PAD) have poor humoral immune responses requiring immunoglobulin replacement therapy. We followed PAD patients after SARS-CoV-2 vaccination by evaluating their immunoglobulin replacement products and serum for anti-spike binding, Fc{gamma}R binding, and neutralizing activities. Immunoglobulin replacement products had low anti-spike and receptor binding domain (RBD) titers and neutralizing activity. In COVID-19-naive PAD patients, anti-spike and RBD titers increased after mRNA vaccination but decreased to pre-immunization levels by 90 days. Patients vaccinated after SARS-CoV-2 infection developed higher responses comparable to healthy donors. Most vaccinated PAD patients had serum neutralizing antibody titers above an estimated correlate of protection against ancestral SARS-CoV-2 and Delta virus but not against Omicron virus, although this was improved by boosting. Thus, currently used immunoglobulin replacement products likely have limited protective activity, and immunization and boosting of PAD patients with mRNA vaccines should confer at least short-term immunity against SARS-CoV-2 variants, including Omicron.

15.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22268617

RESUMO

Emergent SARS-CoV-2 variants and waning humoral immunity in vaccinated individuals have resulted in increased infections and hospitalizations. Children are not spared from infection nor complications of COVID-19, and the recent recommendation for boosters in individuals ages 12 years or older calls for broader understanding of the adolescent immune profile after mRNA vaccination. We tested the durability and cross-reactivity of anti-SARS-CoV-2 serologic responses over a six-month time course in vaccinated adolescents against the SARS-CoV-2 wild type and Omicron antigens. Serum from 77 adolescents showed that anti-Spike antibodies wane significantly over 6 months. After completion of a two-vaccine series, cross-reactivity against Omicron-specific receptor-binding domain (RBD) was seen. Evidence of waning mRNA-induced vaccine immunity underscores vulnerabilities in long-term pediatric protection against SARS-CoV-2 infection, while cross-reactivity highlights the additional benefits of vaccination. Characterization of adolescent immune signatures post-vaccination will inform guidance on vaccine platforms and timelines, and ultimately optimize immunoprotection of children.

16.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22268615

RESUMO

BackgroundSARS-CoV-2 infection is associated with enhanced disease severity in pregnant women. Despite the potential of COVID-19 vaccines to reduce severe disease, vaccine uptake remained relatively low among pregnant women. Just as coordinated messaging from the CDC and leading obstetrics organizations began to increase vaccine confidence in this vulnerable group, the evolution of SARS-CoV-2 variants of concerns (VOC) including the Omicron VOC raised new concerns about vaccine efficacy, given their ability to escape vaccine-induced neutralizing antibodies. Early data point to a milder disease course following omicron VOC infection in vaccinated individuals. Thus, these data suggest that alternate vaccine induced immunity, beyond neutralization, may continue to attenuate omicron disease, such as antibody-Fc-mediated activity. However, whether vaccine induced antibodies raised in pregnancy continue to bind and leverage Fc-receptors remains unclear. MethodsVOC including Omicron receptor binding domain (RBD) or full Spike specific antibody isotype binding titers and Fc{gamma}R binding were analyzed in pregnant women after the full dose regimen of either Pfizer/BioNtech BNT62b2 (n=10) or Moderna mRNA-1273 (n=10) vaccination using a multiplexing Luminex assay. FindingsComparable, albeit reduced, isotype recognition was observed to the Omicron Spike and receptor binding domain (RBD) following both vaccines. Yet, despite the near complete loss of Fc-receptor binding to the Omicron RBD, Fc-receptor binding was largely preserved to the Omicron Spike. InterpretationReduced binding titer to the Omicron RBD aligns with observed loss of neutralizing activity. Despite the loss of neutralization, preserved Omicron Spike recognition and Fc-receptor binding potentially continues to attenuate disease severity in pregnant women. FundingNIH and the Bill and Melinda Gates Foundation

17.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21268378

RESUMO

Despite the dramatic spread of Omicron globally, even among highly vaccinated populations, death rates have not increased concomitantly. These data argue that alternative immune mechanisms, beyond neutralization, may continue to confer protection against severe disease. Beyond their ability to bind and block infection, antibodies contribute to control and clearance of multiple infections via their ability to direct antiviral immunity via Fc-effector mechanisms. Thus, here we probed the ability of vaccine induced antibodies, across three COVID-19 vaccines, to drive Fc-effector activity against Omicron. Despite the significant loss of IgM, IgA and IgG binding to the Omicron Receptor Binding Domain (RBD) across BNT162b2, mRNA-1273, and CoronaVac vaccines, stable isotype binding was observed across all of these vaccines to the Omicron Spike. Compromised RBD binding IgG was accompanied by a significant loss of cross RBD-specific antibody Fc{gamma}-receptor binding by the CoronaVac vaccine, but preservation of RBD-specific Fc{gamma}R2a and Fc{gamma}3a binding across the mRNA vaccines. Conversely, Spike-specific antibodies exhibited persistent binding to Fc{gamma}-receptors, across all three vaccines, albeit higher binding was observed with the mRNA vaccines, marked by a selective preservation of Fc{gamma}R2a and Fc{gamma}3a binding antibodies. Thus, despite the significant to near complete loss of Omicron neutralization across several vaccine platforms against Omicron, vaccine induced Spike-specific antibodies continue to recognize the virus and recruit Fc-receptors pointing to a persistent capacity for extra-neutralizing antibodies to contribute Omicron disease attenuation.

18.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21267198

RESUMO

The rapid spread of the highly mutated SARS-CoV-2 Omicron variant has raised substantial concerns about the protective efficacy of currently available vaccines. We assessed Omicron-specific humoral and cellular immune responses in 65 individuals who were vaccinated with two immunizations of BNT162b2 and were boosted after at least 6 months with either Ad26.COV2.S (Johnson & Johnson; N=41) or BNT162b2 (Pfizer; N=24) (Table S1). O_TBL View this table: org.highwire.dtl.DTLVardef@41c8baorg.highwire.dtl.DTLVardef@e14f5forg.highwire.dtl.DTLVardef@21ea87org.highwire.dtl.DTLVardef@ac4522org.highwire.dtl.DTLVardef@1eed52b_HPS_FORMAT_FIGEXP M_TBL O_FLOATNOTable S1.C_FLOATNO O_TABLECAPTIONCharacteristics of the study population C_TABLECAPTION C_TBL

19.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-473308

RESUMO

Multisystem Inflammatory Syndrome in Children (MIS-C) is a delayed-onset, COVID-19-related hyperinflammatory systemic illness characterized by SARS-CoV-2 antigenemia, cytokine storm and immune dysregulation; however, the role of the neutrophil has yet to be defined. In adults with severe COVID-19, neutrophil activation has been shown to be central to overactive inflammatory responses and complications. Thus, we sought to define neutrophil activation in children with MIS-C and acute COVID-19. We collected samples from 141 children: 31 cases of MIS-C, 43 cases of acute pediatric COVID-19, and 67 pediatric controls. We found that MIS-C neutrophils display a granulocytic myeloid-derived suppressor cell (G-MDSC) signature with highly altered metabolism, which is markedly different than the neutrophil interferon-stimulated gene (ISG) response observed in pediatric patients during acute SARS-CoV-2 infection. Moreover, we identified signatures of neutrophil activation and degranulation with high levels of spontaneous neutrophil extracellular trap (NET) formation in neutrophils isolated from fresh whole blood of MIS-C patients. Mechanistically, we determined that SARS-CoV-2 immune complexes are sufficient to trigger NETosis. Overall, our findings suggest that the hyperinflammatory presentation of MIS-C could be mechanistically linked to persistent SARS-CoV-2 antigenemia through uncontrolled neutrophil activation and NET release in the vasculature. One Sentence SummaryCirculating SARS-CoV-2 antigen:antibody immune complexes in Multisystem Inflammatory Syndrome in Children (MIS-C) drive hyperinflammatory and coagulopathic neutrophil extracellular trap (NET) formation and neutrophil activation pathways, providing insight into disease pathology and establishing a divergence from neutrophil signaling seen in acute pediatric COVID-19.

20.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21266415

RESUMO

COVID-19 vaccination in pregnancy generates functional anti-Spike IgG antibodies that are known to cross the placenta. However, the durability of vaccine-induced maternal anti-S IgG in infant circulation, and how it compares to durability of antibody from maternal natural infection, is unknown. We quantified anti-S IgG in 92 2-month and 6-month-old infants whose mothers were vaccinated in pregnancy, and in 12 6-month-old infants after maternal natural infection with SARS-CoV-2. In the vaccinated group, 94% (58/62) of infants had detectable anti-S IgG at 2 months, and 60% (18/30) had detectable antibody at 6 months. In contrast, 8% (1/12) of infants born to women infected with SARS-CoV-2 in pregnancy had detectable anti-S IgG at the 6-month timepoint. Vaccination resulted in significantly higher maternal and cord titers at delivery and significantly greater antibody persistence in infants at 6 months, compared to natural infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...