Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1363545, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515847

RESUMO

Introduction: Ototoxicity is a debilitating side effect of over 150 medications with diverse mechanisms of action, many of which could be taken concurrently to treat multiple conditions. Approaches for preclinical evaluation of drug-drug interactions that might impact ototoxicity would facilitate design of safer multi-drug regimens and mitigate unsafe polypharmacy by flagging combinations that potentially cause adverse interactions for monitoring. They may also identify protective agents that antagonize ototoxic injury. Methods: To address this need, we have developed a novel workflow that we call Parallelized Evaluation of Protection and Injury for Toxicity Assessment (PEPITA), which empowers high-throughput, semi-automated quantification of ototoxicity and otoprotection in zebrafish larvae via microscopy. We used PEPITA and confocal microscopy to characterize in vivo the consequences of drug-drug interactions on ototoxic drug uptake and cellular damage of zebrafish lateral line hair cells. Results and discussion: By applying PEPITA to measure ototoxic drug interaction outcomes, we discovered antagonistic interactions between macrolide and aminoglycoside antibiotics that confer protection against aminoglycoside-induced damage to lateral line hair cells in zebrafish larvae. Co-administration of either azithromycin or erythromycin in zebrafish protected against damage from a broad panel of aminoglycosides, at least in part via inhibiting drug uptake into hair cells via a mechanism independent from hair cell mechanotransduction. Conversely, combining macrolides with aminoglycosides in bacterial inhibition assays does not show antagonism of antimicrobial efficacy. The proof-of-concept otoprotective antagonism suggests that combinatorial interventions can potentially be developed to protect against other forms of toxicity without hindering on-target drug efficacy.

2.
bioRxiv ; 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37986751

RESUMO

Ototoxicity is a debilitating side effect of over 150 medications with diverse mechanisms of action, many of which could be taken concurrently to treat multiple conditions. Approaches for preclinical evaluation of drug interactions that might impact ototoxicity would facilitate design of safer multi-drug regimens and mitigate unsafe polypharmacy by flagging combinations that potentially cause adverse interactions for monitoring. They may also identify protective agents that antagonize ototoxic injury. To address this need, we have developed a novel workflow that we call Parallelized Evaluation of Protection and Injury for Toxicity Assessment (PEPITA), which empowers high-throughput, semi-automated quantification of ototoxicity and otoprotection in zebrafish larvae. By applying PEPITA to characterize ototoxic drug interaction outcomes, we have discovered antagonistic interactions between macrolide and aminoglycoside antibiotics that confer protection against aminoglycoside-induced damage to lateral line hair cells in zebrafish larvae. Co-administration of either azithromycin or erythromycin in zebrafish protected against damage from a broad panel of aminoglycosides, at least in part via inhibiting drug uptake into hair cells via a mechanism independent from hair cell mechanotransduction. Conversely, combining macrolides with aminoglycosides in bacterial inhibition assays does not show antagonism of antimicrobial efficacy. The proof-of-concept otoprotective antagonism suggests that combinatorial interventions can potentially be developed to protect against other forms of toxicity without hindering on-target drug efficacy.

3.
Zebrafish ; 15(5): 515-518, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30089231

RESUMO

The use of early-stage zebrafish for biomedical research spans early organogenesis to free-swimming larva. A key benefit of this model organism is that repeated assessments spanning several days can be performed of individual larvae within a single experiment, often in conjunction with administered drugs. However, the initiation of feeding, typically at 5 days postfertilization (dpf), can make serial assessments challenging. Therefore, delayed feeding would increase the utility of the model. To ask whether feeding could be delayed without adversely affecting larval growth and development up to 39 dpf, we systematically raised zebrafish and introduced feeding at 5 dpf or delayed initial feeding up to 9 dpf. We assessed survival into the juvenile stage (39 dpf) and anterior-posterior length at this age as proxies for growth and development. Delaying feeding initiation up to 8 dpf did not decrease baseline survival of greater than 90%; survival decreased to 66% only when delayed to 9 dpf. Larval length was no different under any of these conditions. Our findings define 9 dpf as the critical age before which larval zebrafish must be fed when raising to 39 dpf. The option to delay feeding to 8 dpf will broaden experimental applications for the zebrafish larval model.


Assuntos
Privação de Alimentos , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/fisiologia , Animais , Comportamento Alimentar , Fertilização , Larva/fisiologia , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...