Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(23): 237002, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563226

RESUMO

We study the electrodynamics of spin triplet superconductors including dipolar interactions, which give rise to an interplay between the collective spin dynamics of the condensate and orbital Meissner screening currents. Within this theory, we identify a class of spin waves that originate from the coupled dynamics of the spin-symmetry breaking triplet order parameter and the electromagnetic field. In particular, we study magnetostatic spin wave modes that are localized to the sample surface. We show that these surface modes can be excited and detected using experimental techniques such as microwave spin wave resonance spectroscopy or nitrogen-vacancy magnetometry, and propose that the detection of these modes offers a means for the identification of spin triplet superconductivity.

2.
Phys Rev Lett ; 122(16): 167002, 2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31075022

RESUMO

Driving a conventional superconductor with an appropriately tuned classical electromagnetic field can lead to an enhancement of superconductivity via a redistribution of the quasiparticles into a more favorable nonequilibrium distribution-a phenomenon known as the Eliashberg effect. Here, we theoretically consider coupling a two-dimensional superconducting film to the quantized electromagnetic modes of a microwave resonator cavity. As in the classical Eliashberg case, we use a kinetic equation to study the effect of the fluctuating, dynamical electromagnetic field on the Bogoliubov quasiparticles. We find that when the photon and quasiparticle systems are out of thermal equilibrium, a redistribution of quasiparticles into a more favorable nonequilibrium steady state occurs, thereby enhancing superconductivity in the sample. We predict that by tailoring the cavity environment (e.g., the photon occupation and spectral functions), enhancement can be observed in a variety of parameter regimes, offering a large degree of tunability.

3.
Phys Rev Lett ; 122(4): 047003, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30768322

RESUMO

We report anomalous enhancement of the critical current at low temperatures in gate-tunable Josephson junctions made from topological insulator BiSbTeSe_{2} nanoribbons with superconducting Nb electrodes. In contrast to conventional junctions, as a function of the decreasing temperature T, the increasing critical current I_{c} exhibits a sharp upturn at a temperature T_{*} around 20% of the junction critical temperature for several different samples and various gate voltages. The I_{c} vs T demonstrates a short junction behavior for T>T_{*}, but crosses over to a long junction behavior for T

4.
Sci Adv ; 3(3): e1602579, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28435865

RESUMO

Superconductivity that spontaneously breaks time-reversal symmetry (TRS) has been found, so far, only in a handful of three-dimensional (3D) crystals with bulk inversion symmetry. We report an observation of spontaneous TRS breaking in a 2D superconducting system without inversion symmetry: the epitaxial bilayer films of bismuth and nickel. The evidence comes from the onset of the polar Kerr effect at the superconducting transition in the absence of an external magnetic field, detected by the ultrasensitive loop-less fiber-optic Sagnac interferometer. Because of strong spin-orbit interaction and lack of inversion symmetry in a Bi/Ni bilayer, superconducting pairing cannot be classified as singlet or triplet. We propose a theoretical model where magnetic fluctuations in Ni induce the superconducting pairing of the [Formula: see text] orbital symmetry between the electrons in Bi. In this model, the order parameter spontaneously breaks the TRS and has a nonzero phase winding number around the Fermi surface, thus making it a rare example of a 2D topological superconductor.

5.
Proc Natl Acad Sci U S A ; 114(10): 2503-2508, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28196896

RESUMO

We observed and controlled the Brownian motion of solitons. We launched solitonic excitations in highly elongated [Formula: see text] Bose-Einstein condensates (BECs) and showed that a dilute background of impurity atoms in a different internal state dramatically affects the soliton. With no impurities and in one dimension (1D), these solitons would have an infinite lifetime, a consequence of integrability. In our experiment, the added impurities scatter off the much larger soliton, contributing to its Brownian motion and decreasing its lifetime. We describe the soliton's diffusive behavior using a quasi-1D scattering theory of impurity atoms interacting with a soliton, giving diffusion coefficients consistent with experiment.

6.
Phys Rev B ; 952017.
Artigo em Inglês | MEDLINE | ID: mdl-31276076

RESUMO

We investigate the topological degeneracy that can be realized in Abelian fractional quantum spin Hall states with multiply connected gapped boundaries. Such a topological degeneracy (also dubbed as "boundary degeneracy") does not require superconducting proximity effect and can be created by simply applying a depletion gate to the quantum spin Hall material and using a generic spin-mixing term (e.g., due to backscattering) to gap out the edge modes. We construct an exactly soluble microscopic model manifesting this topological degeneracy and solve it using the recently developed technique [S. Ganeshan and M. Levin, Phys. Rev. B 93, 075118 (2016)]. The corresponding string operators spanning this degeneracy are explicitly calculated. It is argued that the proposed scheme is experimentally reasonable.

7.
Phys Rev Lett ; 115(19): 195301, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26588392

RESUMO

We show that interacting bosons in a periodically driven two dimensional (2D) optical lattice may effectively exhibit fermionic statistics. The phenomenon is similar to the celebrated Tonks-Girardeau regime in 1D. The Floquet band of a driven lattice develops the moat shape, i.e., a minimum along a closed contour in the Brillouin zone. Such degeneracy of the kinetic energy favors fermionic quasiparticles. The statistical transmutation is achieved by the Chern-Simons flux attachment similar to the fractional quantum Hall case. We show that the velocity distribution of the released bosons is a sensitive probe of the fermionic nature of their stationary Floquet state.

8.
Phys Rev Lett ; 108(23): 235301, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-23003967

RESUMO

We describe a method for creating a three-dimensional analogue to Rashba spin-orbit coupling in systems of ultracold atoms. This laser induced coupling uses Raman transitions to link four internal atomic states with a tetrahedral geometry, and gives rise to a Dirac point that is robust against environmental perturbations. We present an exact result showing that such a spin-orbit coupling in a fermionic system always gives rise to a molecular bound state.

9.
Phys Rev Lett ; 106(16): 165701, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21599386

RESUMO

Thermal fluctuations tend to destroy long-range phase correlations. Consequently, bosons in a lattice will undergo a transition from a phase-coherent superfluid as the temperature rises. Contrary to common intuition, however, we show that nonequilibrium driving can be used to reverse this thermal decoherence. This is possible because the energy distribution at equilibrium is rarely optimal for the manifestation of a given quantum property. We demonstrate this in the Bose-Hubbard model by calculating the nonequilibrium spatial correlation function with periodic driving. We show that the nonequilibrium phase boundary between coherent and incoherent states at finite bath temperatures can be made qualitatively identical to the familiar zero-temperature phase diagram, and we discuss the experimental manifestation of this phenomenon in cold atoms.

10.
Phys Rev Lett ; 95(7): 077002, 2005 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-16196816

RESUMO

We study the low temperature behavior of an amorphous superconducting film driven normal by a perpendicular magnetic-field (B). For this purpose we introduce a new two-fluid formulation consisting of fermionized field-induced vortices and electrically neutralized Bogoliubov quasiparticles (spinons) interacting via a long-ranged statistical interaction. This approach allows us to access a novel non-Fermi-liquid phase, which naturally interpolates between the low B superconductor and the high B normal metal. We discuss the properties of the resulting "vortex metal" phase.

11.
Phys Rev Lett ; 94(4): 046404, 2005 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-15783580

RESUMO

We study the quantum critical behavior in an isotropic Fermi liquid in the vicinity of a zero-temperature density-wave transition at a finite wave vector qc. We show that, near the transition, the Landau damping of the soft bosonic mode yields a crossover in the fermionic self-energy from Sigma(k,omega) approximately Sigma(k) to Sigma(k,omega) approximately Sigma(omega), where k and omega are momentum and frequency. Because of this self-generated locality, the fermionic effective mass diverges right at the quantum critical point, not before; i.e., the Fermi liquid survives up to the critical point.

12.
Phys Rev Lett ; 94(9): 096602, 2005 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15783984

RESUMO

We study the effects of the RKKY interaction between magnetic impurities on the mesoscopic conductance fluctuations of a metal ring with dilute magnetic impurities. At sufficiently low temperatures and strong magnetic fields, the loss of electron coherence occurs mainly due to the scattering off rare pairs of strongly coupled magnetic impurities. We establish a relation between the dephasing rate and the distribution function of the exchange interaction within such pairs. In the case of the RKKY exchange interaction, this rate exhibits 1/B(2) behavior in strong magnetic fields. We demonstrate that the Aharonov-Bohm conductance oscillations may be used as a probe of the distribution function of the exchange interaction between magnetic impurities in metals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA