Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Psychiatry ; 14(1): 226, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816369

RESUMO

Psychological factors are amongst the most robust predictors of healthspan and longevity, yet are rarely incorporated into scientific and medical frameworks of aging. The prospect of characterizing and integrating the psychological influences of aging is therefore an unmet step for the advancement of geroscience. Psychogenic Aging research is an emerging branch of biogerontology that aims to address this gap by investigating the impact of psychological factors on human longevity. It is an interdisciplinary field that integrates complex psychological, neurological, and molecular relationships that can be best understood with precision medicine methodologies. This perspective argues that psychogenic aging should be considered an integral component of the Hallmarks of Aging framework, opening the doors for future biopsychosocial integration in longevity research. By providing a unique perspective on frequently overlooked aspects of organismal aging, psychogenic aging offers new insights and targets for anti-aging therapeutics on individual and societal levels that can significantly benefit the scientific and medical communities.


Assuntos
Envelhecimento , Longevidade , Humanos , Envelhecimento/psicologia , Envelhecimento/fisiologia
2.
Geroscience ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38589672

RESUMO

Geriatric rehabilitation inpatients have high levels of sedentary behaviour (SB) and low levels of physical activity (PA). Biological age predicted by blood biomarkers is indicative of adverse outcomes. The objective was to determine the association between blood biological age at rehabilitation admission and levels of SB and PA during rehabilitation in geriatric inpatients. Inpatients admitted to geriatric rehabilitation wards at the Royal Melbourne Hospital (Melbourne, Australia) from October 22, 2019, to March 29, 2020, in the REStORing health of acute unwell adulTs (RESORT) observational cohort were included. Blood biological age was predicted using SenoClock-BloodAge, a hematological ageing clock. Patients wore an inertial sensor to measure SB and PA. Logistic regression analyses were conducted. A total of 111 patients (57.7% female) with mean age 83.3 ± 7.5 years were included in the analysis. The mean blood biological age was 82.7 ± 8.4 years. Patients with 1-year higher blood biological age had higher odds of having high SB measured as non-upright time greater than 23 h/day (odds ratio (OR): 1.050, 95% confidence interval (CI): 1.000-1.102). Individuals having 1-year higher age deviation trended towards lower odds of having high levels of PA measured as stepping time greater than 7.4 min/day (OR: 0.916, CI: 0.836-1.005) and as greater than 19.5 sit-to-stand transitions/day (OR: 0.915, CI: 0.836-1.002). In conclusion, higher biological age was associated with higher levels of SB and trended towards lower PA. Incorporating blood biological age could facilitate resource allocation and the development of more tailored rehabilitation plans.

3.
Exp Gerontol ; 190: 112421, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588752

RESUMO

BACKGROUND: Accelerated biological ageing is a major underlying mechanism of frailty development. This study aimed to investigate if the biological age measured by a blood biochemistry-based ageing clock is associated with frailty in geriatric rehabilitation inpatients. METHODS: Within the REStORing health of acutely unwell adulTs (RESORT) cohort, patients' biological age was measured by an ageing clock based on completed data of 30 routine blood test variables measured at rehabilitation admission. The delta of biological age minus chronological age (years) was calculated. Ordinal logistic regression and multinomial logistic regression were performed to evaluate the association of the delta of ages with frailty assessed by the Clinical Frailty Scale. Effect modification of Cumulative Illness Rating Scale (CIRS) score was tested. RESULTS: A total of 1187 geriatric rehabilitation patients were included (median age: 83.4 years, IQR: 77.7-88.5; 57.4 % female). The biochemistry-based biological age was strongly correlated with chronological age (Spearman r = 0.883). After adjustment for age, sex and primary reasons for acute admission, higher biological age (per 1 year higher in delta of ages) was associated with more severe frailty at admission (OR: 1.053, 95 % CI:1.012-1.096) in patients who had a CIRS score of <12 not in patients with a CIRS score >12. The delta of ages was not associated with frailty change from admission to discharge. The specific frailty manifestations as cardiac, hematological, respiratory, renal, and endocrine conditions were associated with higher biological age. CONCLUSION: Higher biological age was associated with severe frailty in geriatric rehabilitation inpatients with less comorbidity burden.


Assuntos
Aprendizado Profundo , Idoso Fragilizado , Fragilidade , Avaliação Geriátrica , Humanos , Feminino , Masculino , Idoso de 80 Anos ou mais , Idoso , Fragilidade/sangue , Avaliação Geriátrica/métodos , Envelhecimento/fisiologia , Envelhecimento/sangue , Pacientes Internados , Modelos Logísticos
4.
Ageing Res Rev ; 88: 101956, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37211319

RESUMO

Epigenetic aging clocks have gained significant attention as a tool for predicting age-related health conditions in clinical and research settings. They have enabled geroscientists to study the underlying mechanisms of aging and assess the effectiveness of anti-aging therapies, including diet, exercise and environmental exposures. This review explores the effects of modifiable lifestyle factors' on the global DNA methylation landscape, as seen by aging clocks. We also discuss the underlying mechanisms through which these factors contribute to biological aging and provide comments on what these findings mean for people willing to build an evidence-based pro-longevity lifestyle.


Assuntos
Envelhecimento , Epigênese Genética , Humanos , Envelhecimento/genética , Longevidade/genética , Metilação de DNA , Dieta
5.
Aging (Albany NY) ; 14(18): 7206-7222, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36170009

RESUMO

We have developed a deep learning aging clock using blood test data from the China Health and Retirement Longitudinal Study, which has a mean absolute error of 5.68 years. We used the aging clock to demonstrate the connection between the physical and psychological aspects of aging. The clock detects accelerated aging in people with heart, liver, and lung conditions. We demonstrate that psychological factors, such as feeling unhappy or being lonely, add up to 1.65 years to one's biological age, and the aggregate effect exceeds the effects of biological sex, living area, marital status, and smoking status. We conclude that the psychological component should not be ignored in aging studies due to its significant impact on biological age.


Assuntos
Envelhecimento , Aposentadoria , Idoso , Envelhecimento/psicologia , China , Humanos , Estudos Longitudinais , Estado Civil
6.
Aging (Albany NY) ; 14(12): 4935-4958, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35723468

RESUMO

In this article, we present a deep learning model of human psychology that can predict one's current age and future well-being. We used the model to demonstrate that one's baseline well-being is not the determining factor of future well-being, as posited by hedonic treadmill theory. Further, we have created a 2D map of human psychotypes and identified the regions that are most vulnerable to depression. This map may be used to provide personalized recommendations for maximizing one's future well-being.


Assuntos
Inteligência Artificial , Redes Neurais de Computação , Algoritmos , Humanos
7.
Life (Basel) ; 11(8)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34440474

RESUMO

Identifying prognostic biomarkers and risk stratification for COVID-19 patients is a challenging necessity. One of the core survival factors is patient age. However, chronological age is often severely biased due to dormant conditions and existing comorbidities. In this retrospective cohort study, we analyzed the data from 5315 COVID-19 patients (1689 lethal cases) admitted to 11 public hospitals in New York City from 1 March 2020 to 1 December. We calculated patients' pace of aging with BloodAge-a deep learning aging clock trained on clinical blood tests. We further constructed survival models to explore the prognostic value of biological age compared to that of chronological age. A COVID-19 score was developed to support a practical patient stratification in a clinical setting. Lethal COVID-19 cases had higher predicted age, compared to non-lethal cases (Δ = 0.8-1.6 years). Increased pace of aging was a significant risk factor of COVID-related mortality (hazard ratio = 1.026 per year, 95% CI = 1.001-1.052). According to our logistic regression model, the pace of aging had a greater impact (adjusted odds ratio = 1.09 ± 0.00, per year) than chronological age (1.04 ± 0.00, per year) on the lethal infection outcome. Our results show that a biological age measure, derived from routine clinical blood tests, adds predictive power to COVID-19 survival models.

8.
Aging Dis ; 12(5): 1252-1262, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34341706

RESUMO

DNA methylation aging clocks have become an invaluable tool in biogerontology research since their inception in 2013. Today, a variety of machine learning approaches have been tested for the purpose of predicting human age based on molecular-level features. Among these, deep learning, or neural networks, is an especially promising approach that has been used to construct accurate clocks using blood biochemistry, transcriptomics, and microbiomics data-feats unachieved by other algorithms. In this article, we explore how deep learning performs in a DNA methylation setting and compare it to the current industry standard-the 353 CpG clock published in 2013. The aging clock we are presenting (DeepMAge) is a neural network regressor trained on 4,930 blood DNA methylation profiles from 17 studies. Its absolute median error was 2.77 years in an independent verification set of 1,293 samples from 15 studies. DeepMAge shows biological relevance by assigning a higher predicted age to people with various health-related conditions, such as ovarian cancer, irritable bowel diseases, and multiple sclerosis.

9.
PLoS Comput Biol ; 17(7): e1009183, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34260589

RESUMO

Coronavirus disease 2019 (COVID-19) is an acute infection of the respiratory tract that emerged in December 2019 in Wuhan, China. It was quickly established that both the symptoms and the disease severity may vary from one case to another and several strains of SARS-CoV-2 have been identified. To gain a better understanding of the wide variety of SARS-CoV-2 strains and their associated symptoms, thousands of SARS-CoV-2 genomes have been sequenced in dozens of countries. In this article, we introduce COVIDomic, a multi-omics online platform designed to facilitate the analysis and interpretation of the large amount of health data collected from patients with COVID-19. The COVIDomic platform provides a comprehensive set of bioinformatic tools for the multi-modal metatranscriptomic data analysis of COVID-19 patients to determine the origin of the coronavirus strain and the expected severity of the disease. An integrative analytical workflow, which includes microbial pathogens community analysis, COVID-19 genetic epidemiology and patient stratification, allows to analyze the presence of the most common microbial organisms, their antibiotic resistance, the severity of the infection and the set of the most probable geographical locations from which the studied strain could have originated. The online platform integrates a user friendly interface which allows easy visualization of the results. We envision this tool will not only have immediate implications for management of the ongoing COVID-19 pandemic, but will also improve our readiness to respond to other infectious outbreaks.


Assuntos
COVID-19/epidemiologia , Computação em Nuvem , Biologia Computacional/métodos , Interface Usuário-Computador , COVID-19/genética , COVID-19/fisiopatologia , COVID-19/virologia , Humanos , Fatores de Risco , SARS-CoV-2/genética , Índice de Gravidade de Doença
10.
Front Aging ; 2: 697254, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35822029

RESUMO

DeepMAge is a deep-learning DNA methylation aging clock that measures the organismal pace of aging with the information from human epigenetic profiles. In blood samples, DeepMAge can predict chronological age within a 2.8 years error margin, but in saliva samples, its performance is drastically reduced since aging clocks are restricted by the training set domain. However, saliva is an attractive fluid for genomic studies due to its availability, compared to other tissues, including blood. In this article, we display how cell type deconvolution and elastic net can be used to expand the domain of deep aging clocks to other tissues. Using our approach, DeepMAge's error in saliva samples was reduced from 20.9 to 4.7 years with no retraining.

11.
iScience ; 23(6): 101199, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32534441

RESUMO

The human gut microbiome is a complex ecosystem that both affects and is affected by its host status. Previous metagenomic analyses of gut microflora revealed associations between specific microbes and host age. Nonetheless there was no reliable way to tell a host's age based on the gut community composition. Here we developed a method of predicting hosts' age based on microflora taxonomic profiles using a cross-study dataset and deep learning. Our best model has an architecture of a deep neural network that achieves the mean absolute error of 5.91 years when tested on external data. We further advance a procedure for inferring the role of particular microbes during human aging and defining them as potential aging biomarkers. The described intestinal clock represents a unique quantitative model of gut microflora aging and provides a starting point for building host aging and gut community succession into a single narrative.

12.
Ageing Res Rev ; 60: 101050, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272169

RESUMO

The aging process results in multiple traceable footprints, which can be quantified and used to estimate an organism's age. Examples of such aging biomarkers include epigenetic changes, telomere attrition, and alterations in gene expression and metabolite concentrations. More than a dozen aging clocks use molecular features to predict an organism's age, each of them utilizing different data types and training procedures. Here, we offer a detailed comparison of existing mouse and human aging clocks, discuss their technological limitations and the underlying machine learning algorithms. We also discuss promising future directions of research in biohorology - the science of measuring the passage of time in living systems. Overall, we expect deep learning, deep neural networks and generative approaches to be the next power tools in this timely and actively developing field.


Assuntos
Envelhecimento , Biomarcadores , Aprendizado de Máquina , Redes Neurais de Computação , Envelhecimento/genética , Algoritmos , Animais , Biomarcadores/análise , Humanos , Camundongos
13.
Ageing Res Rev ; 49: 104-114, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30513346

RESUMO

Most multicellular organisms are known to age, due to accumulation of damage and other deleterious changes over time. These changes are often irreversible, as organisms, humans included, evolved fully differentiated, irreplaceable cells (e.g. neurons) and structures (e.g. skeleton). Hence, deterioration or loss of at least some cells and structures should lead to inevitable aging of these organisms. Yet, some cells may escape this fate: adult somatic cells may be converted to partially reprogrammed cells or induced pluripotent stem cells (iPSCs). By their nature, iPSCs are the cells representing the early stages of life, indicating a possibility of reversing the age of cells within the organism. Reprogramming strategies may be accomplished both in vitro and in vivo, offering opportunities for rejuvenation in the context of whole organisms. Similarly, older organs may be replaced with the younger ones prepared ex vivo, or grown within other organisms or even other species. How could the irreversibility of aging of some parts of the organism be reconciled with the putative reversal of aging of the other parts of the same organism? Resolution of this question holds promise for dramatically extending lifespan, which is currently not possible with traditional genetic, dietary and pharmacological approaches. Critical issues in this challenge are the nature of aging, relationship between aging of an organism and aging of its parts, relationship between cell dedifferentiation and rejuvenation, and increased risk of cancer that goes hand in hand with rejuvenation approaches.


Assuntos
Envelhecimento/fisiologia , Rejuvenescimento/fisiologia , Animais , Diferenciação Celular , Reprogramação Celular , Epigênese Genética , Epigenômica , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Longevidade , Parabiose , Telomerase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...