Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Genet ; 69(4-6): 203-212, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37269314

RESUMO

First marketed as RoundUp, glyphosate is history's most popular herbicide because of its low acute toxicity to metazoans and broad-spectrum effectiveness across plant species. The development of glyphosate-resistant crops has led to increased glyphosate use and consequences from the use of glyphosate-based herbicides (GBH). Glyphosate has entered the food supply, spurred glyphosate-resistant weeds, and exposed non-target organisms to glyphosate. Glyphosate targets EPSPS/AroA/Aro1 (orthologs across plants, bacteria, and fungi), the rate-limiting step in the production of aromatic amino acids from the shikimate pathway. Metazoans lacking this pathway are spared from acute toxicity and acquire their aromatic amino acids from their diet. However, glyphosate resistance is increasing in non-target organisms. Mutations and natural genetic variation discovered in Saccharomyces cerevisiae illustrate similar types of glyphosate resistance mechanisms in fungi, plants, and bacteria, in addition to known resistance mechanisms such as mutations in Aro1 that block glyphosate binding (target-site resistance (TSR)) and mutations in efflux drug transporters non-target-site resistance (NTSR). Recently, genetic variation and mutations in an amino transporter affecting glyphosate resistance have uncovered potential off-target effects of glyphosate in fungi and bacteria. While glyphosate is a glycine analog, it is transported into cells using an aspartic/glutamic acid (D/E) transporter. The size, shape, and charge distribution of glyphosate closely resembles D/E, and, therefore, glyphosate is a D/E amino acid mimic. The mitochondria use D/E in several pathways and mRNA-encoding mitochondrial proteins are differentially expressed during glyphosate exposure. Mutants downstream of Aro1 are not only sensitive to glyphosate but also a broad range of other chemicals that cannot be rescued by exogenous supplementation of aromatic amino acids. Glyphosate also decreases the pH when unbuffered and many studies do not consider the differences in pH that affect toxicity and resistance mechanisms.


Assuntos
Herbicidas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Herbicidas/farmacologia , Glicina/farmacologia , Glicina/metabolismo , Plantas , Aminoácidos Aromáticos
2.
Metallomics ; 15(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36841230

RESUMO

The increased use of antimicrobial compounds such as copper into nanoparticles changes how living cells interact with these novel materials. The increased use of antimicrobial nanomaterials combats infectious disease and food spoilage. Fungal infections are particularly difficult to treat because of the few druggable targets, and Saccharomyces cerevisiae provides an insightful model organism to test these new materials. However, because of the novel characteristics of these materials, it is unclear how these materials interact with living cells and if resistance to copper-based nanomaterials could occur. Copper nanoparticles built on carboxymethylcellulose microfibril strands with copper (CMC-Cu) are a promising nanomaterial when imported into yeast cells and induce cell death. The α-arrestins are cargo adaptors that select which molecules are imported into eukaryotic cells. We screened α-arrestins mutants and identified Aly2, Rim8, and Rog3 α-arrestins, which are necessary for the internalization of CMC-Cu nanoparticles. Internal reactive oxygen species in these mutants were lower and corresponded to the increased viability in the presence of CMC-Cu. Using lattice light-sheet microscopy on live cells, we determined that CMC-Cu were imported into yeast within 30 min of exposure. Initially, the cytoplasmic pH decreased but returned to basal level 90 min later. However, there was heterogeneity in response to CMC-Cu exposure, which could be due to the heterogeneity of the particles or differences in the metabolic states within the population. When yeast were exposed to sublethal concentrations of CMC-Cu no resistance occurred. Internalization of CMC-Cu increases the potency of these antimicrobial nanomaterials and is likely key to preventing fungi from evolving resistance.


Assuntos
Nanopartículas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Cobre/metabolismo , Arrestinas/metabolismo , Nanopartículas/química
3.
Toxicol Rep ; 8: 38-43, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33391995

RESUMO

Following chemical spill disasters, it is important to estimate the effects of spilled chemicals on humans and the environment. Here we analyzed the toxicological effects of the coal cleaning chemical, 4-methylcyclohexane methanol (MCHM), which was spilled into the Elk River water supply in 2014. The viability of HEK293 T human cell line cultures and Xenopus tropicalis embryos was negatively affected, and the addition of the antioxidants alleviated toxicity with MCHM exposure. Additionally, X. tropicalis embryos suffered developmental defects as well as reversible non-responsiveness and melanization defects. The impact MCHM has on HEK293 T cells and X. tropicalis points to the importance of continued follow-up studies of this chemical.

4.
G3 (Bethesda) ; 10(12): 4665-4678, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33109726

RESUMO

In 2014, the coal cleaning chemical 4-methylcyclohexane methanol (MCHM) spilled into the water supply for 300,000 West Virginians. Initial toxicology tests showed relatively mild results, but the underlying effects on cellular biology were underexplored. Treated wildtype yeast cells grew poorly, but there was only a small decrease in cell viability. Cell cycle analysis revealed an absence of cells in S phase within thirty minutes of treatment. Cells accumulated in G1 over a six-hour time course, indicating arrest instead of death. A genetic screen of the haploid knockout collection revealed 329 high confidence genes required for optimal growth in MCHM. These genes encode three major cell processes: mitochondrial gene expression/translation, the vacuolar ATPase, and aromatic amino acid biosynthesis. The transcriptome showed an upregulation of pleiotropic drug response genes and amino acid biosynthetic genes and downregulation in ribosome biosynthesis. Analysis of these datasets pointed to environmental stress response activation upon treatment. Overlap in datasets included the aromatic amino acid genes ARO1, ARO3, and four of the five TRP genes. This implicated nutrient deprivation as the signal for stress response. Excess supplementation of nutrients and amino acids did not improve growth on MCHM, so the source of nutrient deprivation signal is still unclear. Reactive oxygen species and DNA damage were directly detected with MCHM treatment, but timepoints showed these accumulated slower than cells arrested. We propose that wildtype cells arrest from nutrient deprivation and survive, accumulating oxidative damage through the implementation of robust environmental stress responses.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Metanol , Nutrientes , Estresse Oxidativo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Environ Pollut ; 262: 114359, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32443188

RESUMO

Glyphosate-based herbicides, the most extensively used herbicides in the world, are available in an enormous number of commercial formulations with varying additives and adjuvants. Here, we study the effects of one such formulation, Credit41, in two genetically diverse yeast strains. A quantitative trait loci (QTL) analysis between a sensitive laboratory strain and a resistant strain linked mitochondrial function to Credit41 resistance. Two genes encoding mitochondrial proteins identified through the QTL analysis were HFA1, a gene that encodes a mitochondrial acetyl CoA carboxylase, and AAC3, which encodes a mitochondrial inner membrane ATP/ADP translocator. Further analysis of previously studied whole-genome sequencing data showed that, although each strain uses varying routes to attain glyphosate resistance, most strains have duplications of mitochondrial genes. One of the most well-studied functions of the mitochondria is the assembly of Fe-S clusters. In the current study, the expression of iron transporters in the transcriptome increased in cells resistant to Credit41. The levels of iron within the cell also increased in cells exposed to Credit41 but not pure glyphosate. Hence, the additives in glyphosate-based herbicides have a significant contribution to the negative effects of these commercial formulations on biological systems.


Assuntos
Herbicidas , Saccharomyces cerevisiae , Glicina/análogos & derivados , Mitocôndrias , Glifosato
6.
G3 (Bethesda) ; 10(6): 2043-2056, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32299824

RESUMO

The use of glyphosate-based herbicides is widespread and despite their extensive use, their effects are yet to be deciphered completely. The additives in commercial formulations of glyphosate, though labeled inert when used individually, have adverse effects when used in combination with other additives along with the active ingredient. As a species, Saccharomyces cerevisiae has a wide range of resistance to glyphosate-based herbicides. To investigate the underlying genetic differences between sensitive and resistant strains, global changes in gene expression were measured, when yeast were exposed to a glyphosate-based herbicide (GBH). Expression of genes involved in numerous pathways crucial to the cell's functioning, such as DNA replication, MAPK signaling, meiosis, and cell wall synthesis changed. Because so many diverse pathways were affected, these strains were then subjected to in-lab-evolutions (ILE) to select mutations that confer increased resistance. Common fragile sites were found to play a role in adaptation to resistance to long-term exposure of GBHs. Copy number increased in approximately 100 genes associated with cell wall proteins, mitochondria, and sterol transport. Taking ILE and transcriptomic data into account it is evident that GBHs affect multiple biological processes in the cell. One such component is the cell wall structure which acts as a protective barrier in alleviating the stress caused by exposure to inert additives in GBHs. Sed1, a GPI-cell wall protein, plays an important role in tolerance of a GBH. Hence, a detailed study of the changes occurring at the genome and transcriptome levels is essential to better understand the effects of an environmental stressor such as a GBH, on the cell as a whole.


Assuntos
Herbicidas , Saccharomyces cerevisiae , Ciclo Celular , Parede Celular , Dano ao DNA , Glicina/análogos & derivados , Saccharomyces cerevisiae/genética , Glifosato
7.
Metallomics ; 12(5): 799-812, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32239052

RESUMO

Nanotechnology is a promising new technology, of which antimicrobial metal nanocomposites are predicted to become valuable in medical and food packaging applications. Copper is a redox-active antimicrobial metal that can become increasingly toxic depending on the target biomolecule's donor atom selectivity and the chemical species of copper present. Mass is the traditional measurement of the intrinsic elemental chemistry, but this practice fails to reflect the morphology and surface area reactivity of nanotechnology. The carboxymethyl cellulose copper nanoparticles (CMC-Cu) investigated in this study have unique and undefined toxicity to Saccharomyces cerevisiae that is different from CuSO4. Cellular surface damage was found in scanning electron micrographs upon CMC-Cu exposure. Further investigation into the lipids revealed altered phosphatidylcholine and phosphatidylethanolamine membrane composition, as well as depleted triacylglycerols, suggesting an impact on the Kennedy lipid pathway. High levels of reactive oxygen species were measured which likely played a role in the lipid peroxidation detected with CMC-Cu treatment. Metal homeostasis was affected by CMC-Cu treatment. The copper sensitive yeast strain, YJM789, significantly decreased cellular zinc concentrations while the copper concentrations increased, suggesting a possible ionic mimicry relationship. In contrast to other compounds that generate ROS, no evidence of genotoxicity was found. As commonplace objects become more integrated with nanotechnology, humanity must look forward past traditional measurements of toxicity.


Assuntos
Carboximetilcelulose Sódica/química , Cobre/toxicidade , Lipídeos/análise , Nanopartículas Metálicas/toxicidade , Metais/análise , Saccharomyces cerevisiae/crescimento & desenvolvimento , Dano ao DNA , Peroxidação de Lipídeos/efeitos dos fármacos , Lipidômica , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo
8.
Int J Mol Sci ; 21(5)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164312

RESUMO

The Mediator is composed of multiple subunits conserved from yeast to humans and plays a central role in transcription. The tail components are not required for basal transcription but are required for responses to different stresses. While some stresses are familiar, such as heat, desiccation, and starvation, others are exotic, yet yeast can elicit a successful stress response. 4-Methylcyclohexane methanol (MCHM) is a hydrotrope that induces growth arrest in yeast. We found that a naturally occurring variation in the Med15 allele, a component of the Mediator tail, altered the stress response to many chemicals in addition to MCHM. Med15 contains two polyglutamine repeats (polyQ) of variable lengths that change the gene expression of diverse pathways. The Med15 protein existed in multiple isoforms and its stability was dependent on Ydj1, a protein chaperone. The protein level of Med15 with longer polyQ tracts was lower and turned over faster than the allele with shorter polyQ repeats. MCHM sensitivity via variation of Med15 was regulated by Snf1 in a Myc-tag-dependent manner. Tagging Med15 with Myc altered its function in response to stress. Genetic variation in transcriptional regulators magnified genetic differences in response to environmental changes. These polymorphic control genes were master variators.


Assuntos
Cicloexanos/farmacologia , Complexo Mediador/genética , Complexo Mediador/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP40/metabolismo , Complexo Mediador/química , Mutação , Peptídeos , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Estresse Fisiológico
9.
Biol Trace Elem Res ; 195(1): 260-271, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31392542

RESUMO

While drugs and other industrial chemicals are routinely studied to assess risks, many widely used chemicals have not been thoroughly evaluated. One such chemical, 4-methylcyclohexane methanol (MCHM), is an industrial coal-cleaning chemical that contaminated the drinking water supply in Charleston, WV, USA in 2014. While a wide range of ailments was reported following the spill, little is known about the molecular effects of MCHM exposure. We used the yeast model to explore the impacts of MCHM on cellular function. Exposure to MCHM dramatically altered the yeast transcriptome and the balance of metals in yeast. Underlying genetic variation in the response to MCHM, transcriptomics and, mutant analysis uncovered the role of the metal transporters, Arn2 and Yke4, to MCHM response. Expression of Arn2, which is involved in iron uptake, was lower in MCHM-tolerant yeast and loss of Arn2 further increased MCHM tolerance. Genetic variation within Yke4, an ER zinc transporter, also mediated response to MCHM, and loss of Yke4 decreased MCHM tolerance. The addition of zinc to MCHM-sensitive yeast rescued growth inhibition. In vitro assays demonstrated that MCHM acted as a hydrotrope and prevented protein interactions, while zinc induced the aggregation of proteins. We hypothesized that MCHM altered the structures of extracellular domains of proteins, and the addition of zinc stabilized the structure to maintain metal homeostasis in yeast exposed to MCHM.


Assuntos
Cicloexanos/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Zinco/metabolismo , Cicloexanos/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Zinco/análise
10.
PLoS One ; 14(10): e0223909, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31622418

RESUMO

On January 2014 approximately 10,000 gallons of crude 4-Methylcyclohexanemethanol (MCHM) and propylene glycol phenol ether (PPH) were accidentally released into the Elk River, West Virginia, contaminating the tap water of around 300,000 residents. Crude MCHM is an industrial chemical used as flotation reagent to clean coal. At the time of the spill, MCHM's toxicological data were limited, an issue that has been addressed by different studies focused on understanding the immediate and long-term effects of MCHM on human health and the environment. Using S. cerevisiae as a model organism we study the effect of acute exposure to crude MCHM on metabolism. Yeasts were treated with MCHM 550 ppm in YPD for 30 minutes. Polar and lipid metabolites were extracted from cells by a chloroform-methanol-water mixture. The extracts were then analyzed by direct injection ESI-MS and by GC-MS. The metabolomics analysis was complemented with flux balance analysis simulations done with genome-scale metabolic network models (GSMNM) of MCHM treated vs non-treated control. We integrated the effect of MCHM on yeast gene expression from RNA-Seq data within these GSMNM. A total of 215 and 73 metabolites were identified by the ESI-MS and GC-MS procedures, respectively. From these 26 and 23 relevant metabolites were selected from ESI-MS and GC-MS respectively, for 49 unique compounds. MCHM induced amino acid accumulation, via its effects on amino acid metabolism, as well as a potential impairment of ribosome biogenesis. MCHM affects phospholipid biosynthesis, with a potential impact on the biophysical properties of yeast cellular membranes. The FBA simulations were able to reproduce the deleterious effect of MCHM on cellular growth and suggest that the effect of MCHM on ubiquinol:ferricytochrome c reductase reaction, caused by the under-expression of CYT1 gene, could be the driven force behind the observed effect on yeast metabolism and growth.


Assuntos
Cicloexanos/toxicidade , Metaboloma/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Poluentes Químicos da Água/toxicidade , Proteínas Fúngicas/genética , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Análise do Fluxo Metabólico , Metabolômica/métodos , Modelos Biológicos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análise de Sequência de RNA , West Virginia
11.
FEMS Yeast Res ; 19(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30445532

RESUMO

Ribosomes are synthesized by large ribonucleoprotein complexes cleaving and properly assembling highly structured rRNAs with ribosomal proteins. Transcription and processing of pre-rRNAs are linked by the transcription-Utp sub-complex (t-Utps), a sub-complex of the small subunit (SSU) processome and prompted the investigations for the requirements of t-Utp formation and transition into the SSU processome. The rDNA promoter, the first 44 nucleotides of the 5΄ETS, and active transcription by pol I were sufficient to recruit the t-Utps to the rDNA. Pol5, accessory factor, dissociated as t-Utps matured into the UtpA complex which permitted later recruitment of the UtpB, U3 snoRNP and the Mpp10 complex into the SSU processome. The t-Utp complex associated with short RNAs 121 and 138 nucleotides long transcribed from the 5΄ETS. These transcripts were not present when pol II transcribed the rDNA or in nondividing cells. Depletion of a t-Utp, but not of other SSU processome components led to decreased levels of the short transcripts. However, ectopic expression of the short transcripts slowed the growth of yeast with impaired rDNA transcription. These results provide insight into how transcription of the rRNA primes the assemble of t-Utp complex with the pre-rRNA into the UtpA complex and the later association of SSU processome components.


Assuntos
Complexos Multienzimáticos/metabolismo , Biogênese de Organelas , RNA Ribossômico 18S/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Saccharomyces cerevisiae/metabolismo
12.
G3 (Bethesda) ; 8(2): 607-619, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29208650

RESUMO

Cellular metabolism can change the potency of a chemical's tumorigenicity. 4-nitroquinoline-1-oxide (4NQO) is a tumorigenic drug widely used on animal models for cancer research. Polymorphisms of the transcription factor Yrr1 confer different levels of resistance to 4NQO in Saccharomyces cerevisiae To study how different Yrr1 alleles regulate gene expression leading to resistance, transcriptomes of three isogenic Scerevisiae strains carrying different Yrr1 alleles were profiled via RNA sequencing (RNA-Seq) and chromatin immunoprecipitation coupled with sequencing (ChIP-Seq) in the presence and absence of 4NQO. In response to 4NQO, all alleles of Yrr1 drove the expression of SNQ2 (a multidrug transporter), which was highest in the presence of 4NQO resistance-conferring alleles, and overexpression of SNQ2 alone was sufficient to overcome 4NQO-sensitive growth. Using shape metrics to refine the ChIP-Seq peaks, Yrr1 strongly associated with three loci including SNQ2 In addition to a known Yrr1 target SNG1, Yrr1 also bound upstream of RPL35B; however, overexpression of these genes did not confer 4NQO resistance. RNA-Seq data also implicated nucleotide synthesis pathways including the de novo purine pathway, and the ribonuclease reductase pathways were downregulated in response to 4NQO. Conversion of a 4NQO-sensitive allele to a 4NQO-resistant allele by a single point mutation mimicked the 4NQO-resistant allele in phenotype, and while the 4NQO resistant allele increased the expression of the ADE genes in the de novo purine biosynthetic pathway, the mutant Yrr1 increased expression of ADE genes even in the absence of 4NQO. These same ADE genes were only increased in the wild-type alleles in the presence of 4NQO, indicating that the point mutation activated Yrr1 to upregulate a pathway normally only activated in response to stress. The various Yrr1 alleles also influenced growth on different carbon sources by altering the function of the mitochondria. Hence, the complement to 4NQO resistance was poor growth on nonfermentable carbon sources, which in turn varied depending on the allele of Yrr1 expressed in the isogenic yeast. The oxidation state of the yeast affected the 4NQO toxicity by altering the reactive oxygen species (ROS) generated by cellular metabolism. The integration of RNA-Seq and ChIP-Seq elucidated how Yrr1 regulates global gene transcription in response to 4NQO and how various Yrr1 alleles confer differential resistance to 4NQO. This study provides guidance for further investigation into how Yrr1 regulates cellular responses to 4NQO, as well as transcriptomic resources for further analysis of transcription factor variation on carbon source utilization.


Assuntos
4-Nitroquinolina-1-Óxido/farmacologia , Carbono/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Alelos , Fermentação , Mutagênicos/farmacologia , Mutação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
13.
PLoS One ; 12(11): e0187522, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29155836

RESUMO

S. cerevisiae from different environments are subject to a wide range of selective pressures, whether intentional or by happenstance. Chemicals classified by their application, such as herbicides, fungicides and antibiotics, can affect non-target organisms. First marketed as RoundUp™, glyphosate is the most widely used herbicide. In plants, glyphosate inhibits EPSPS, of the shikimate pathway, which is present in many organisms but lacking in mammals. The shikimate pathway produces chorismate which is the precursor to all the aromatic amino acids, para-aminobenzoic acid, and Coenzyme Q10. Crops engineered to be resistant to glyphosate contain a homolog of EPSPS that is not bound by glyphosate. Here, we show that S. cerevisiae has a wide-range of glyphosate resistance. Sequence comparison between the target proteins, i.e., the plant EPSPS and the yeast orthologous protein Aro1, predicted that yeast would be resistant to glyphosate. However, the growth variation seen in the subset of yeast tested was not due to polymorphisms within Aro1, instead, it was caused by genetic variation in an ABC multiple drug transporter, Pdr5, and an amino acid permease, Dip5. Using genetic variation as a probe into glyphosate response, we uncovered mechanisms that contribute to the transportation of glyphosate in and out of the cell. Taking advantage of the natural genetic variation within yeast and measuring growth under different conditions that would change the use of the shikimate pathway, we uncovered a general transport mechanism of glyphosate into eukaryotic cells.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Sistemas de Transporte de Aminoácidos/genética , Fósforo-Oxigênio Liases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Variação Genética , Glicina/análogos & derivados , Glicina/toxicidade , Resistência a Herbicidas/genética , Herbicidas/toxicidade , Redes e Vias Metabólicas/efeitos dos fármacos , Plantas/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Ácido Chiquímico/metabolismo , Glifosato
14.
Metallomics ; 9(9): 1304-1315, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28869270

RESUMO

Copper (Cu) was used in antiquity to prevent waterborne and food diseases because, as a broad-spectrum antimicrobial agent, it generates reactive oxygen species, ROS. New technologies incorporating Cu into low-cost biodegradable nanomaterials built on cellulose, known as cellulosic cupric nanoparticles or c-CuNPs, present novel approaches to deliver Cu in a controlled manner to control microbial growth. We challenged strains of Saccharomyces cerevisiae with soluble Cu and c-CuNPs to evaluate the potential of c-CuNPs as antifungal agents. Cells exposed to c-CuNPs demonstrated greater sensitivity to Cu than cells exposed to soluble Cu, although Cu-resistant strains were more tolerant than Cu-sensitive strains of c-CuNP exposure. At the same level of growth inhibition, 157 µM c-CuNPs led to the same internal Cu levels as did 400 µM CuSO4, offering evidence for alternative mechanisms of toxicity, perhaps through ß-arrestin dependent endocytosis, which was supported by flow cytometry and fluorescence microscopy of c-CuNPs distributed both on the cell surface and within the cytoplasm. Genes responsible for genetic variation in response to copper were mapped to the ZRT2 and the CUP1 loci. Through proteomic analyses, we found that the expression of other zinc (Zn) transporters increased in Cu-tolerant yeast compared to Cu-sensitive strains. Further, the addition of Zn at low levels increased the potency of c-CuNPs to inhibit even the most Cu-tolerant yeast. Through unbiased systems biological approaches, we identified Zn as a critical component of the yeast response to Cu and the addition of Zn increased the potency of the c-CuNPs.


Assuntos
Antifúngicos/toxicidade , Cobre/toxicidade , Nanopartículas Metálicas/toxicidade , Proteômica/métodos , Saccharomyces cerevisiae/efeitos dos fármacos , Antifúngicos/química , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Celulose/química , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Nanopartículas Metálicas/química , Metalotioneína/genética , Metalotioneína/metabolismo , Testes de Sensibilidade Microbiana , Proteoma/genética , Proteoma/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
J Environ Qual ; 45(5): 1490-1500, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27695739

RESUMO

Chemical spills and accidents contaminate the environment and disrupt societies and economies around the globe. In the United States there were approximately 172,000 chemical spills that affected US waterbodies from 2004 to 2014. More than 8000 of these spills involved non-petroleum-related chemicals. Traditional emergency responses or incident command structures (ICSs) that respond to chemical spills require coordinated efforts by predominantly government personnel from multiple disciplines, including disaster management, public health, and environmental protection. However, the requirements of emergency response teams for science support might not be met within the traditional ICS. We describe the US ICS as an example of emergency-response approaches to chemical spills and provide examples in which external scientific support from research personnel benefitted the ICS emergency response, focusing primarily on nonpetroleum chemical spills. We then propose immediate, near-term, and long-term activities to support the response to chemical spills, focusing on nonpetroleum chemical spills. Further, we call for science support for spill prevention and near-term spill-incident response and identify longer-term research needs. The development of a formal mechanism for external science support of ICS from governmental and nongovernmental scientists would benefit rapid responders, advance incident- and crisis-response science, and aid society in coping with and recovering from chemical spills.


Assuntos
Acidentes , Poluentes Químicos da Água , Substâncias Perigosas , Estados Unidos
16.
Methods Mol Biol ; 1205: 231-55, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25213249

RESUMO

Transcription factors influence gene expression through their ability to bind DNA at specific regulatory elements. Specific DNA-protein interactions can be isolated through the chromatin immunoprecipitation (ChIP) procedure, in which DNA fragments bound by the protein of interest are recovered. ChIP is followed by high-throughput DNA sequencing (Seq) to determine the genomic provenance of ChIP DNA fragments and their relative abundance in the sample. This chapter describes a ChIP-Seq strategy adapted for budding yeast to enable the genome-wide characterization of binding sites of transcription factors (TFs) and other DNA-binding proteins in an efficient and cost-effective way.Yeast strains with epitope-tagged TFs are most commonly used for ChIP-Seq, along with their matching untagged control strains. The initial step of ChIP involves the cross-linking of DNA and proteins. Next, yeast cells are lysed and sonicated to shear chromatin into smaller fragments. An antibody against an epitope-tagged TF is used to pull down chromatin complexes containing DNA and the TF of interest. DNA is then purified and proteins degraded. Specific barcoded adapters for multiplex DNA sequencing are ligated to ChIP DNA. Short DNA sequence reads (28-36 base pairs) are parsed according to the barcode and aligned against the yeast reference genome, thus generating a nucleotide-resolution map of transcription factor-binding sites and their occupancy.


Assuntos
Imunoprecipitação da Cromatina/métodos , DNA Fúngico/genética , Proteínas Fúngicas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Fatores de Transcrição/metabolismo , Leveduras/genética , Sítios de Ligação , DNA Fúngico/química , DNA Fúngico/metabolismo , Biblioteca Gênica , Genômica/métodos , Ligação Proteica , Leveduras/química , Leveduras/metabolismo
17.
Genes Dev ; 28(4): 409-21, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24532717

RESUMO

Genetic basis of phenotypic differences in individuals is an important area in biology and personalized medicine. Analysis of divergent Saccharomyces cerevisiae strains grown under different conditions revealed extensive variation in response to both drugs (e.g., 4-nitroquinoline 1-oxide [4NQO]) and different carbon sources. Differences in 4NQO resistance were due to amino acid variation in the transcription factor Yrr1. Yrr1(YJM789) conferred 4NQO resistance but caused slower growth on glycerol, and vice versa with Yrr1(S96), indicating that alleles of Yrr1 confer distinct phenotypes. The binding targets of Yrr1 alleles from diverse yeast strains varied considerably among different strains grown under the same conditions as well as for the same strain under different conditions, indicating that distinct molecular programs are conferred by the different Yrr1 alleles. Our results demonstrate that genetic variations in one important control gene (YRR1), lead to distinct regulatory programs and phenotypes in individuals. We term these polymorphic control genes "master variators."


Assuntos
Regulação Fúngica da Expressão Gênica/genética , Variação Genética , Fenótipo , Saccharomyces cerevisiae/fisiologia , 4-Nitroquinolina-1-Óxido/farmacologia , Alelos , Farmacorresistência Fúngica/genética , Glicerol/metabolismo , Mutagênicos/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo
18.
Nucleic Acids Res ; 39(12): 5164-80, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21349877

RESUMO

The synthesis of ribosomal subunits in the nucleolus is a conserved, essential process that results in cytoplasmic ribosomes with precisely processed and folded rRNAs assembled with ribosomal proteins. It has been proposed, but never directly demonstrated, that the U3 small nucleolar RNA (snoRNA), a nucleolar component required for ribosome biogenesis, is a chaperone for pre-18S rRNA folding. To test this, we used in vivo chemical probing with dimethyl sulfate to detect changes in pre-rRNA structure upon genetic manipulation of the yeast, Saccharomyces cerevisiae. Based on changes in nucleotide reactivity, we found that the U3 snoRNA is indeed required for folding of the pre-18S rRNA. Furthermore, we detected a new essential base pairing interaction that is likely the initial anchor that recruits the U3 snoRNA to the pre-rRNA, is a prerequisite for the subsequent interactions, and is required for the small subunit processome formation. Substitution of the 5'-ETS nucleotides of the pre-rRNA involved in this initial base pairing interaction is lethal, but growth is restored when a complementary U3 snoRNA is expressed. The U3 snoRNP, via base pairing, and its associated proteins, are part of the required machinery that orchestrates the folding of pre-rRNA that results in the assembly of the small ribosomal subunit.


Assuntos
Precursores de RNA/química , RNA Ribossômico 18S/química , RNA Nucleolar Pequeno/química , Pareamento de Bases , Sequência de Bases , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , RNA Nucleolar Pequeno/metabolismo
19.
Proc Natl Acad Sci U S A ; 107(9): 3988-93, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20142501

RESUMO

Metabolic labeling of glycans with synthetic sugar analogs has emerged as an attractive means for introducing nonnatural chemical functionality into glycoproteins. However, the complexities of glycan biosynthesis prevent the installation of nonnatural moieties at defined, predictable locations within glycoproteins at high levels of incorporation. Here, we demonstrate that the conserved N-acetyglucosamine (GlcNAc) residues within chitobiose cores of N-glycans in the model organism Saccharomyces cerevisiae can be specifically targeted for metabolic replacement by unnatural sugars. We introduced an exogenous GlcNAc salvage pathway into yeast, allowing cells to metabolize GlcNAc provided as a supplement to the culture medium. We then rendered the yeast auxotrophic for production of the donor nucleotide-sugar uridine-diphosphate-GlcNAc (UDP-GlcNAc) by deletion of the essential gene GNA1. We demonstrate that gna1Delta strains require a GlcNAc supplement and that expression plasmids containing both exogenous components of the salvage pathway, GlcNAc transporter NGT1 from Candida albicans and GlcNAc kinase NAGK from Homo sapiens, are required for rescue in this context. Further, we show that cells successfully incorporate synthetic GlcNAc analogs N-azidoacetyglucosamine (GlcNAz) and N-(4-pentynoyl)-glucosamine (GlcNAl) into cell-surface glycans and secreted glycoproteins. To verify incorporation of the nonnatural sugars at N-glycan core positions, endoglycosidase H (endoH)-digested peptides from a purified secretory glycoprotein, Ygp1, were analyzed by mass spectrometry. Multiple Ygp1 N-glycosylation sites bearing GlcNAc, isotopically labeled GlcNAc, or GlcNAz were identified; these modifications were dependent on the supplement added to the culture medium. This system enables the production of glycoproteins that are functionalized for specific chemical modifications at their glycosylation sites.


Assuntos
Metabolismo dos Carboidratos , Polissacarídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilglucosamina/metabolismo , Sequência de Aminoácidos , Glicoproteínas/química , Glicoproteínas/metabolismo , Dados de Sequência Molecular , Polissacarídeos/química
20.
FEBS Lett ; 583(24): 3895-9, 2009 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-19903479

RESUMO

Systems biology represents a paradigm shift from the study of individual genes, proteins or other components to that of the analysis of entire pathways, cellular, developmental, or organismal processes. Large scale studies, primarily initiated in Saccharomyces cerevisiae, have allowed the identification and characterization of components on an unprecedented level. Large scale interaction, transcription factor binding and phosphorylation data have enabled the elucidation of global regulatory networks. These studies have helped provide an understanding of cellular pathways and processes at a global and systems level.


Assuntos
Saccharomyces cerevisiae/metabolismo , Biologia de Sistemas/métodos , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , Genômica , Redes e Vias Metabólicas , Metabolômica , Fosforilação , Mapeamento de Interação de Proteínas , Saccharomyces cerevisiae/genética , Biologia de Sistemas/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...