Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hered ; 113(2): 205-214, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35575077

RESUMO

The plant genus Bidens (Asteraceae or Compositae; Coreopsidae) is a species-rich and circumglobally distributed taxon. The 19 hexaploid species endemic to the Hawaiian Islands are considered an iconic example of adaptive radiation, of which many are imperiled and of high conservation concern. Until now, no genomic resources were available for this genus, which may serve as a model system for understanding the evolutionary genomics of explosive plant diversification. Here, we present a high-quality reference genome for the Hawai'i Island endemic species B. hawaiensis A. Gray reconstructed from long-read, high-fidelity sequences generated on a Pacific Biosciences Sequel II System. The haplotype-aware, draft genome assembly consisted of ~6.67 Giga bases (Gb), close to the holoploid genome size estimate of 7.56 Gb (±0.44 SD) determined by flow cytometry. After removal of alternate haplotigs and contaminant filtering, the consensus haploid reference genome was comprised of 15 904 contigs containing ~3.48 Gb, with a contig N50 value of 422 594. The high interspersed repeat content of the genome, approximately 74%, along with hexaploid status, contributed to assembly fragmentation. Both the haplotype-aware and consensus haploid assemblies recovered >96% of Benchmarking Universal Single-Copy Orthologs. Yet, the removal of alternate haplotigs did not substantially reduce the proportion of duplicated benchmarking genes (~79% vs. ~68%). This reference genome will support future work on the speciation process during adaptive radiation, including resolving evolutionary relationships, determining the genomic basis of trait evolution, and supporting ongoing conservation efforts.


Assuntos
Bidens , Genoma , Genoma de Planta , Genômica , Haploidia , Havaí
2.
Am J Bot ; 108(3): 505-519, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33675072

RESUMO

PREMISE: With over 1500 species, the globally distributed Vernonieae is one of the most successful members of the largest family of flowering plants, the Compositae. However, due to its morphological complexity and limited geographic representation in previous studies, subtribal and biogeographic relationships are unclear. Here, new DNA sequence data spanning the geographic range of the tribe provides a taxonomically robust time-calibrated phylogeny, estimates migration pathways and timing of important biogeographic events, and allows inference of environmental factors that have contributed to the success of the Vernonieae worldwide. METHODS: Phylogenetic relationships were estimated for 368 taxa representing all Vernonieae subtribes. Molecular clock and ancestral range estimation analyses provide a framework for inference of the biogeographic history of the tribe. RESULTS: Relationships among the subtribes were established and correct placement determined for problematic taxa, along with the first model-based assessment of the biogeographic history of the tribe. The Vernonieae were estimated to have evolved ~50 mya. Africa was the first center of diversity, from which a single dispersal event established the monophyletic New World lineage. Long-distance dispersal from Africa and Brazil established the tribe on five continents and Oceania. CONCLUSIONS: The New World lineage is monophyletic, but Old World taxa are not. New subtribal taxonomies are needed. Moquinieae are nested in Vernonieae. Long-distance dispersal from Africa beginning 45 mya was key to establishing the tribe's near-global distribution. Migration corridors created by volcanic mountain chains and iron-rich soils in Africa and the Americas promoted radiation and range expansion.


Assuntos
Asteraceae , Helianthus , África , Teorema de Bayes , Brasil , Helianthus/genética , Filogenia , Filogeografia
3.
Front Plant Sci ; 12: 787127, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35178056

RESUMO

Herbarium sheets present a unique view of the world's botanical history, evolution, and biodiversity. This makes them an all-important data source for botanical research. With the increased digitization of herbaria worldwide and advances in the domain of fine-grained visual classification which can facilitate automatic identification of herbarium specimen images, there are many opportunities for supporting and expanding research in this field. However, existing datasets are either too small, or not diverse enough, in terms of represented taxa, geographic distribution, and imaging protocols. Furthermore, aggregating datasets is difficult as taxa are recognized under a multitude of names and must be aligned to a common reference. We introduce the Herbarium 2021 Half-Earth dataset: the largest and most diverse dataset of herbarium specimen images, to date, for automatic taxon recognition. We also present the results of the Herbarium 2021 Half-Earth challenge, a competition that was part of the Eighth Workshop on Fine-Grained Visual Categorization (FGVC8) and hosted by Kaggle to encourage the development of models to automatically identify taxa from herbarium sheet images.

5.
New Phytol ; 228(1): 376-392, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32446281

RESUMO

Fossil grass silica short cell phytoliths (GSSCP) have been used to reconstruct the biogeography of Poaceae, untangle crop domestication history and detect past vegetation shifts. These inferences depend on accurately identifying the clade to which the fossils belong. Patterns of GSSCP shape and size variation across the family have not been established and current classification methods are subjective or based on a 2D view that ignores important 3D shape variation. Focusing on Poaceae subfamilies Anomochlooideae, Pharoideae, Pueliodieae, Bambusoideae and Oryzoideae, we observed in situ GSSCP to establish their orientation and imaged isolated GSSCP using confocal microscopy to produce 3D models. 3D geometric morphometrics was used to analyze GSSCP shape and size. Classification models were applied to GSSCP from Eocene sediments from Nebraska, USA, and Anatolia, Turkey. There were significant shape differences between nearly all recognized GSSCP morphotypes and between clades with shared morphotypes. Most of the Eocene GSSCP were classified as woody bamboos with some distinctive Nebraska GSSCP classified as herbaceous bamboos. 3D morphometrics hold great promise for GSSCP classification. It accounts for the complete GSSCP shape, automates size measurements and accommodates the complete range of morphotypes within a single analytical framework.


Assuntos
Fósseis , Poaceae , Filogenia , Dióxido de Silício
6.
J Hered ; 111(1): 119-137, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31953949

RESUMO

Hawaiian plant radiations often result in lineages with exceptionally high species richness and extreme morphological and ecological differentiation. However, they typically display low levels of genetic variation, hindering the use of classic DNA markers to resolve their evolutionary histories. Here we utilize a phylogenomic approach to generate the first generally well-resolved phylogenetic hypothesis for the evolution of the Hawaiian Bidens (Asteraceae) adaptive radiation, including refined initial colonization and divergence time estimates. We sequenced the chloroplast genome (plastome) and nuclear ribosomal complex for 18 of the 19 endemic species of Hawaiian Bidens and 4 outgroup species. Phylogenomic analyses based on the concatenated dataset (plastome and nuclear) resulted in identical Bayesian and Maximum Likelihood trees with high statistical support at most nodes. Estimates from dating analyses were similar across datasets, with the crown group emerging ~1.76-1.82 Mya. Biogeographic analyses based on the nuclear and concatenated datasets indicated that colonization within the Hawaiian Islands generally followed the progression rule with 67-80% of colonization events from older to younger islands, while only 53% of events followed the progression rule in the plastome analysis. We find strong evidence for nuclear-plastome conflict indicating a potentially important role for hybridization in the evolution of the group. However, incomplete lineage sorting cannot be ruled out due to the small number of independent loci analyzed. This study contributes new insights into species relationships and the biogeographic history of the explosive Hawaiian Bidens adaptive radiation.


Assuntos
Bidens/genética , Evolução Molecular , Especiação Genética , Genoma de Planta , Núcleo Celular/genética , DNA de Plantas , Genoma de Cloroplastos , Havaí , Modelos Genéticos , Filogenia , Filogeografia , Proteínas Ribossômicas/genética
7.
New Phytol ; 228(1): 15-23, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33448428

RESUMO

Process-based vegetation models attempt to represent the wide range of trait variation in biomes by grouping ecologically similar species into plant functional types (PFTs). This approach has been successful in representing many aspects of plant physiology and biophysics but struggles to capture biogeographic history and ecological dynamics that determine biome boundaries and plant distributions. Grass-dominated ecosystems are broadly distributed across all vegetated continents and harbour large functional diversity, yet most Land Surface Models (LSMs) summarise grasses into two generic PFTs based primarily on differences between temperate C3 grasses and (sub)tropical C4 grasses. Incorporation of species-level trait variation is an active area of research to enhance the ecological realism of PFTs, which form the basis for vegetation processes and dynamics in LSMs. Using reported measurements, we developed grass functional trait values (physiological, structural, biochemical, anatomical, phenological, and disturbance-related) of dominant lineages to improve LSM representations. Our method is fundamentally different from previous efforts, as it uses phylogenetic relatedness to create lineage-based functional types (LFTs), situated between species-level trait data and PFT-level abstractions, thus providing a realistic representation of functional diversity and opening the door to the development of new vegetation models.


Assuntos
Ecossistema , Plantas , Filogenia , Dispersão Vegetal , Poaceae
8.
Cladistics ; 36(5): 481-504, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-34618964

RESUMO

We used a bi-organellar phylogenomic approach to address higher-order relationships in Pandanales, including the first molecular phylogenetic study of the panama-hat family, Cyclanthaceae. Our genus-level study of plastid and mitochondrial gene sets includes a comprehensive sampling of photosynthetic lineages across the order, and provides a framework for investigating clade ages, biogeographic hypotheses and organellar molecular evolution. Using multiple inference methods and both organellar genomes, we recovered mostly congruent and strongly supported relationships within and between families, including the placement of fully mycoheterotrophic Triuridaceae. Cyclanthaceae and Pandanaceae plastomes have slow substitution rates, contributing to weakly supported plastid-based relationships in Cyclanthaceae. While generally slowly evolving, mitochondrial genomes exhibit sporadic rate elevation across the order. However, we infer well-supported relationships even for slower evolving mitochondrial lineages in Cyclanthaceae. Clade age estimates across photosynthetic lineages are largely consistent with previous studies, are well correlated between the two organellar genomes (with slightly younger inferences from mitochondrial data), and support several biogeographic hypotheses. We show that rapidly evolving non-photosynthetic lineages may bias age estimates upwards at neighbouring photosynthetic nodes, even using a relaxed clock model. Finally, we uncovered new genome structural variants in photosynthetic taxa at plastid inverted repeat boundaries that show promise as interfamilial phylogenetic markers.


Assuntos
Genoma Mitocondrial , Genomas de Plastídeos , Magnoliopsida/classificação , Magnoliopsida/genética , Genes de Plantas , Mitocôndrias/genética , Filogenia , Plastídeos/genética
9.
Evolution ; 73(5): 927-946, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30874302

RESUMO

Grass leaf shape is a strong indicator of their habitat with linear leaves predominating in open areas and ovate leaves distinguishing forest-associated grasses. This pattern among extant species suggests that ancestral shifts between forest and open habitats may have coincided with changes in leaf shape or size. We tested relationships between habitat, climate, photosynthetic pathway, and leaf shape and size in a phylogenetic framework to evaluate drivers of leaf shape and size variation over the evolutionary history of the family. We also estimated the ancestral habitat of Poaceae and tested whether forest margins served as transitional zones for shifts between forests and grasslands. We found that grass leaf shape is converging toward different shape optima in the forest understory, forest margins, and open habitats. Leaf size also varies with habitat. Grasses have smaller leaves in open and drier areas, and in areas with high solar irradiance. Direct transitions between linear and ovate leaves are rare as are direct shifts between forest and open habitats. The most likely ancestral habitat of the family was the forest understory and forest margins along with an intermediate leaf shape served as important transitional habitat and morphology, respectively, for subsequent shifts across forest-grassland biome boundaries.


Assuntos
Ecossistema , Folhas de Planta/fisiologia , Poaceae/genética , Poaceae/fisiologia , Teorema de Bayes , Biodiversidade , Evolução Biológica , China , Clima , Florestas , Fósseis , Pradaria , Funções Verossimilhança , Fotossíntese , Filogenia , Fatores de Tempo
10.
Appl Plant Sci ; 6(8): e01177, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30214840

RESUMO

PREMISE OF THE STUDY: A refined procedure is described for modeling small, intricate plant structures using computer-aided design software. The procedure facilitates the study of wind pollination in the family Poaceae and provides virtual biological illustrations for public outreach. METHODS AND RESULTS: Spikelets were fixed in gFAA, dehydrated using ethanol and xylene, embedded in paraffin wax, and then sectioned with a rotary microtome. Images of serial sections were used as a reference for modeling the shape of bracts with splines in a computer-aided design program. Virtual models produced by this method have many potential uses; examples include geometric morphometric analyses and simulations of computational fluid dynamics. CONCLUSIONS: This protocol is a synthesis of modern biological illustration and engineering technology. Virtual models facilitate quantitative experiments that may address questions about reproductive biology, conditions shaping the form of anatomical support, or the morphological evolution of structures of biomechanical interest.

11.
PLoS One ; 7(9): e44966, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22984595

RESUMO

We coordinated biogeographical comparisons of the impacts of an exotic invasive tree in its native and non-native ranges with a congeneric comparison in the non-native range. Prosopis juliflora is taxonomically complicated and with P. pallida forms the P. juliflora complex. Thus we sampled P. juliflora in its native Venezuela, and also located two field sites in Peru, the native range of Prosopis pallida. Canopies of Prosopis juliflora, a native of the New World but an invader in many other regions, had facilitative effects on the diversity of other species in its native Venezuela, and P. pallida had both negative and positive effects depending on the year, (overall neutral effects) in its native Peru. However, in India and Hawaii, USA, where P. juliflora is an aggressive invader, canopy effects were consistently and strongly negative on species richness. Prosopis cineraria, a native to India, had much weaker effects on species richness in India than P. juliflora. We carried out multiple congeneric comparisons between P. juliflora and P. cineraria, and found that soil from the rhizosphere of P. juliflora had higher extractable phosphorus, soluble salts and total phenolics than P. cineraria rhizosphere soils. Experimentally applied P. juliflora litter caused far greater mortality of native Indian species than litter from P. cineraria. Prosopis juliflora leaf leachate had neutral to negative effects on root growth of three common crop species of north-west India whereas P. cineraria leaf leachate had positive effects. Prosopis juliflora leaf leachate also had higher concentrations of total phenolics and L-tryptophan than P. cineraria, suggesting a potential allelopathic mechanism for the congeneric differences. Our results also suggest the possibility of regional evolutionary trajectories among competitors and that recent mixing of species from different trajectories has the potential to disrupt evolved interactions among native species.


Assuntos
Ecossistema , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Prosopis/crescimento & desenvolvimento , Geografia , Havaí , Índia , Peru , Fenóis/metabolismo , Fósforo/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Densidade Demográfica , Dinâmica Populacional , Prosopis/classificação , Prosopis/metabolismo , Rizosfera , Sais/metabolismo , Solo/análise , Especificidade da Espécie , Estados Unidos , Venezuela
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...