Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Acta Biomater ; 171: 261-272, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37742726

RESUMO

A strategy that seeks to combine the biophysical properties of inert encapsulation materials like alginate with the biochemical niche provided by pancreatic extracellular matrix (ECM)-derived biomaterials, could provide a physiomimetic pancreatic microenvironment for maintaining long-term islet viability and function in culture. Herein, we have demonstrated that incorporating human pancreatic decellularized ECM within alginate microcapsules results in a significant increase in Glucose Stimulation Index (GSI) and total insulin secreted by encapsulated human islets, compared to free islets and islets encapsulated in only alginate. ECM supplementation also resulted in long-term (58 days) maintenance of GSI levels, similar to that observed in free islets at the first time point (day 5). At early time points in culture, ECM promoted gene expression changes through ECM- and cell adhesion-mediated pathways, while it demonstrated a mitochondria-protective effect in the long-term. STATEMENT OF SIGNIFICANCE: The islet isolation process can damage the islet extracellular matrix, resulting in loss of viability and function. We have recently developed a detergent-free, DI-water based method for decellularization of human pancreas to produce a potent solubilized ECM. This ECM was added to alginate for microencapsulation of human islets, which resulted in significantly higher stimulation index and total insulin production, compared to only alginate capsules and free islets, over long-term culture. Using ECM to preserve islet health and function can improve transplantation outcomes, as well as provide novel materials and platforms for studying islet biology in microfluidic, organ-on-a-chip, bioreactor and 3D bioprinted systems.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Secreção de Insulina , Pâncreas/metabolismo , Insulina/farmacologia , Matriz Extracelular/metabolismo , Alginatos/farmacologia
2.
Int J Biol Macromol ; 249: 125957, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37499705

RESUMO

Heparin is the most common anticoagulant used in clinical practice but shows some downsides such as short half-life (for the high molecular weight heparin) and secondary effects. On the other hand, its low molecular weight analogue cannot be neutralized with protamine, and therefore cannot be used in some treatments. To address these issues, we conjugated polyethylene glycol (PEG) to heparin reducing end (end-on) via oxime ligation and studied the interactions of the conjugate (Hep-b-PEG) with antithrombin III (AT) and protamine. Isothermal titration calorimetry showed that Hep-b-PEG maintains the affinity to AT. Dynamic light scattering demonstrated that the Hep-b-PEG formed colloidal stable nanocomplexes with protamine instead of large multi-molecular aggregates, associated with heparin side effects. The in vitro (human plasma) and in vivo experiments (Sprague Dawley rats) evidenced an extended half-life and higher anticoagulant activity of the conjugate when compared to unmodified heparin.


Assuntos
Heparina , Protaminas , Animais , Ratos , Humanos , Heparina/efeitos adversos , Protaminas/química , Ratos Sprague-Dawley , Anticoagulantes/farmacologia , Anticoagulantes/química
3.
Biochem Biophys Res Commun ; 528(4): 650-657, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32513541

RESUMO

INTRODUCTION: The extension of islet transplantation to a wider number of type 1 diabetes patients is compromised by severe adverse events related to the immunosuppressant therapy required for allogenic islet transplantation. In this context, microencapsulation offers the prospects of immunosuppressive-free therapy by physically isolating islets from the immune system. However, current biomaterials need to be optimized to: improve biocompatibility, guaranty the maintenance of graft viability and functionality, and prevent fibrosis overgrowth around the capsule in vivo. Accumulating evidence suggest that mesenchymal stem cells (MSCs) and anchor points consisting of tripeptides arg-gly-asp (RGD) have cytoprotective effects on pancreatic islets. Here, we investigated the effect of supplementing reference M-rich alginate microcapsules with MSCs and RGD-G rich alginate on bioprocessing as well as on human pancreatic islets viability and functionality. METHODS: We characterized the microcapsules components, and then for the new microcapsule composite product: we analyzed the empty capsules biocompatibility and then investigated the benefits of MSCs and RGD-G rich alginate on viability and functionality on the encapsulated human pancreatic islets in vitro. We performed viability tests by confocal microscopy and glucose stimulated insulin secretion (GSIS) test in vitro to assess the functionality of naked and encapsulated islets. RESULTS: Encapsulation in reference M-rich alginate capsules induced a reduction in viability and functionality compared to naked islets. This side-effect of encapsulation was in part counteracted by the presence of MSCs but the restoration was complete with the combination of both MSCs and the RGD-G rich alginate. CONCLUSIONS: The present findings show that bioprocessing a favorable composite environment inside the M-rich alginate capsule with both MSCs and RGD-G rich alginate improves human islets survival and functionality in vitro.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Células Imobilizadas/citologia , Ilhotas Pancreáticas/citologia , Células-Tronco Mesenquimais/citologia , Oligopeptídeos/farmacologia , Adulto , Alginatos/química , Células Cultivadas , Células Imobilizadas/efeitos dos fármacos , Humanos , Ilhotas Pancreáticas/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Pessoa de Meia-Idade
4.
Mem Inst Oswaldo Cruz ; 103(4): 347-50, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18660988

RESUMO

The reproductive mechanism of Giardia intestinalis, considered one of the earliest divergent eukaryotes, has not been fully defined yet. Some evidence supports the hypothesis that Giardia is an exclusively asexual organism with a clonal population structure. However, the high genetic variability, the variation in ploidy during its life cycle, the low heterozygosity and the existence of genes involved in the meiotic-like recombination pathway in the parasite's genome cast doubt on exclusively asexual nature of Giardia. In this work, semiquantitative RT-PCR analysis was used to assess the transcription pattern of three meiosis-like-specific genes involved in homologues recombination: dmc1, hop1 and spo11. The mRNAs were amplified during the parasite's differentiation processes, encystation and excystation, and expression was found at each stage of its life cycle. A semiquantitative assessment also suggests that expression of some of the genes is regulated during encystation process.


Assuntos
Genes de Protozoários/genética , Giardia lamblia/genética , Meiose/genética , Animais , Troca Genética , RNA Mensageiro , Reprodução Assexuada , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
5.
Mem. Inst. Oswaldo Cruz ; 103(4): 347-350, June 2008. graf, tab
Artigo em Inglês | LILACS | ID: lil-486873

RESUMO

The reproductive mechanism of Giardia intestinalis, considered one of the earliest divergent eukaryotes, has not been fully defined yet. Some evidence supports the hypothesis that Giardia is an exclusively asexual organism with a clonal population structure. However, the high genetic variability, the variation in ploidy during its life cycle, the low heterozygosity and the existence of genes involved in the meiotic-like recombination pathway in the parasite's genome cast doubt on exclusively asexual nature of Giardia. In this work, semiquantitative RT-PCR analysis was used to assess the transcription pattern of three meiosis-like-specific genes involved in homologues recombination: dmc1, hop1 and spo11. The mRNAs were amplified during the parasite's differentiation processes, encystation and excystation, and expression was found at each stage of its life cycle. A semiquantitative assessment also suggests that expression of some of the genes is regulated during encystation process.


Assuntos
Animais , Genes de Protozoários/genética , Giardia lamblia/genética , Meiose/genética , Troca Genética , Reprodução Assexuada , Reação em Cadeia da Polimerase Via Transcriptase Reversa , RNA Mensageiro , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...