Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Environ DNA ; 6(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38370872

RESUMO

The sequencing revolution requires accurate taxonomic classification of DNA sequences. Key to making accurate taxonomic assignments are curated, comprehensive reference barcode databases. However, the generation and curation of such databases has remained challenging given the large and continuously growing volumes of both DNA sequence data and novel reference barcode targets. Monitoring and research applications require a greater diversity of specialized gene regions and targeted taxa then are currently curated by professional staff. Thus there is a growing need for an easy to implement computational tool that can generate comprehensive metabarcoding reference libraries for any bespoke locus. We address this need by reimagining CRUX from the Anacapa Toolkit and present the rCRUX package in R which, like it's predecessor, relies on sequence homology and PCR primer compatibility instead of keyword-searches to avoid limitations of user-defined metadata. The typical workflow involves searching for plausible seed amplicons (get_seeds_local() or get_seeds_remote()) by simulating in silico PCR to acquire a set of sequences analogous to PCR products containing a user-defined set of primer sequences. Next, these seeds are used to iteratively blast search seed sequences against a local copy of the National Center for Biotechnology Information (NCBI) formatted nt database using a taxonomic-rank based stratified random sampling approach ( blast_seeds() ). This results in a comprehensive set of sequence matches. This database is dereplicated and cleaned (derep_and_clean_db()) by identifying identical reference sequences and collapsing the taxonomic path to the lowest taxonomic agreement across all matching reads. This results in a curated, comprehensive database of primer-specific reference barcode sequences from NCBI. Databases can then be compared (compare_db()) to determine read and taxonomic overlap. We demonstrate that rCRUX provides more comprehensive reference databases for the MiFish Universal Teleost 12S, Taberlet trnl, fungal ITS, and Leray CO1 loci than CRABS, MetaCurator, RESCRIPt, and ecoPCR reference databases. We then further demonstrate the utility of rCRUX by generating 24 reference databases for 20 metabarcoding loci, many of which lack dedicated reference database curation efforts. The rCRUX package provides a simple to use tool for the generation of curated, comprehensive reference databases for user-defined loci, facilitating accurate and effective taxonomic classification of metabarcoding and DNA sequence efforts broadly.

2.
PLoS One ; 18(12): e0281525, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38150426

RESUMO

Non-native species have the potential to cause ecological and economic harm to coastal and estuarine ecosystems. Understanding which habitat types are most vulnerable to biological invasions, where invasions originate, and the vectors by which they arrive can help direct limited resources to prevent or mitigate ecological and socio-economic harm. Information about the occurrence of non-native species can help guide interventions at all stages of invasion, from first introduction, to naturalization and invasion. However, monitoring at relevant scales requires considerable investment of time, resources, and taxonomic expertise. Environmental DNA (eDNA) metabarcoding methods sample coastal ecosystems at broad spatial and temporal scales to augment established monitoring methods. We use COI mtDNA eDNA sampling to survey a diverse assemblage of species across distinct habitats in the Salish Sea in Washington State, USA, and classify each as non-native, native, or indeterminate in origin. The non-native species detected include both well-documented invaders and species not previously reported within the Salish Sea. We find a non-native assemblage dominated by shellfish and algae with native ranges in the temperate western Pacific, and find more-retentive estuarine habitats to be invaded at far higher levels than better-flushed rocky shores. Furthermore, we find an increase in invasion level with higher water temperatures in spring and summer across habitat types. This analysis contributes to a growing understanding of the biotic and abiotic factors that influence invasion level, and underscores the utility of eDNA surveys to monitor biological invasions and to better understand the factors that drive these invasions.


Assuntos
DNA Ambiental , Ecossistema , DNA Ambiental/genética , Água , Plantas , DNA Mitocondrial/genética , Biodiversidade , Código de Barras de DNA Taxonômico , Monitoramento Ambiental/métodos
3.
bioRxiv ; 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37397980

RESUMO

Key to making accurate taxonomic assignments are curated, comprehensive reference barcode databases. However, the generation and curation of such databases has remained challenging given the large and continuously growing volumes of DNA sequence data and novel reference barcode targets. Monitoring and research applications require a greater diversity of specialized gene regions and targeted taxa to meet taxonomic classification goals then are currently curated by professional staff. Thus, there is a growing need for an easy to implement tool that can generate comprehensive metabarcoding reference libraries for any bespoke locus. We address this need by reimagining CRUX from the Anacapa Toolkit and present the rCRUX package in R. The typical workflow involves searching for plausible seed amplicons (get_seeds_local() or get_seeds_remote()) by simulating in silico PCR to acquire seed sequences containing a user-defined primer set. Next these seeds are used to iteratively blast search seed sequences against a local NCBI formatted database using a taxonomic rank based stratified random sampling approach (blast_seeds()) that results in a comprehensive set of sequence matches. This database is dereplicated and cleaned (derep_and_clean_db()) by identifying identical reference sequences and collapsing the taxonomic path to the lowest taxonomic agreement across all matching reads. This results in a curated, comprehensive database of primer specific reference barcode sequences from NCBI. We demonstrate that rCRUX provides more comprehensive reference databases for the MiFish Universal Teleost 12S, Taberlet trnl, and fungal ITS locus than CRABS, METACURATOR, RESCRIPt, and ECOPCR reference databases. We then further demonstrate the utility of rCRUX by generating 16 reference databases for metabarcoding loci that lack dedicated reference database curation efforts. The rCRUX package provides a simple to use tool for the generation of curated, comprehensive reference databases for user-defined loci, facilitating accurate and effective taxonomic classification of metabarcoding and DNA sequence efforts broadly.

4.
PLoS One ; 18(5): e0285674, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37167310

RESUMO

Metabarcoding is a powerful molecular tool for simultaneously surveying hundreds to thousands of species from a single sample, underpinning microbiome and environmental DNA (eDNA) methods. Deriving quantitative estimates of underlying biological communities from metabarcoding is critical for enhancing the utility of such approaches for health and conservation. Recent work has demonstrated that correcting for amplification biases in genetic metabarcoding data can yield quantitative estimates of template DNA concentrations. However, a major source of uncertainty in metabarcoding data stems from non-detections across technical PCR replicates where one replicate fails to detect a species observed in other replicates. Such non-detections are a special case of variability among technical replicates in metabarcoding data. While many sampling and amplification processes underlie observed variation in metabarcoding data, understanding the causes of non-detections is an important step in distinguishing signal from noise in metabarcoding studies. Here, we use both simulated and empirical data to 1) suggest how non-detections may arise in metabarcoding data, 2) outline steps to recognize uninformative data in practice, and 3) identify the conditions under which amplicon sequence data can reliably detect underlying biological signals. We show with both simulations and empirical data that, for a given species, the rate of non-detections among technical replicates is a function of both the template DNA concentration and species-specific amplification efficiency. Consequently, we conclude metabarcoding datasets are strongly affected by (1) deterministic amplification biases during PCR and (2) stochastic sampling of amplicons during sequencing-both of which we can model-but also by (3) stochastic sampling of rare molecules prior to PCR, which remains a frontier for quantitative metabarcoding. Our results highlight the importance of estimating species-specific amplification efficiencies and critically evaluating patterns of non-detection in metabarcoding datasets to better distinguish environmental signal from the noise inherent in molecular detections of rare targets.


Assuntos
Código de Barras de DNA Taxonômico , DNA Ambiental , Código de Barras de DNA Taxonômico/métodos , DNA/genética , Reação em Cadeia da Polimerase/métodos , Incerteza , Biodiversidade
5.
Mol Ecol Resour ; 23(4): 818-832, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36695156

RESUMO

Biomonitoring surveys make use of metabarcoding tools to describe the community composition. These studies match their sequencing results against public genomic databases to identify the species. However, mitochondrial genomic reference data are yet incomplete, only a few genes may be available, or the suitability of existing sequence data is suboptimal for species level resolution. Here, we present a dedicated and cost-effective workflow with no DNA amplification for generating complete fish mitogenomes for the purpose of strengthening fish mitochondrial databases. Two different strategies using long fragment sequencing with Oxford Nanopore technology coupled with mitochondrial DNA enrichment were used. One where the enrichment is achieved by preferential isolation of mitochondria followed by DNA extraction and nuclear DNA depletion ("mitoenrichment"). A second enrichment approach takes advantage of the CRISPR Cas9 targeted scission on previously dephosphorylated DNA ("targeted mitosequencing"). The sequencing results varied between tissue, species, and integrity of the DNA. The mitoenrichment method yielded 0.17%-12.33% of sequences on target and a mean coverage ranging from 74.9 to 805-fold. The targeted mitosequencing experiment from native genomic DNA yielded 1.83%-55% of sequences on target and a 38 to 2123-fold mean coverage. These produced complete mitogenomes of species with homopolymeric regions, tandem repeats, and gene rearrangements. We demonstrate that deep sequencing of long fragments of native fish DNA can be achieved with low computational resources in a cost-effective manner, opening the discovery of mitogenomes of nonmodel or understudied fish taxa to a broad range of laboratories worldwide.


Los estudios de biomonitoreo utilizan herramientas de caracterización genética (metabarcoding) para describir la composición de la comunidad. Estos estudios contrastan las secuencias obtenidas con bases de datos genómicas públicas para así identificar la especie. Sin embargo, las bases de datos mitocondriales de referencia distan mucho de estar completas. En la mayor parte de los casos solo hay unos pocos genes disponibles o los datos existentes no ofrecen resolución hasta el nivel de especie. En este estudio presentamos un método dedicado a generar mitogenomas de peces completos de forma rentable y sin necesidad de amplificación del ADN, con el objeto de ampliar las bases de datos mitocondriales de peces. Para ello se utilizaron dos enfoques diferentes de secuenciación de fragmentos largos utilizando secuenciación Oxford Nanopore y enriquecimiento de ADN mitocondrial. Uno en el que el enriquecimiento se logra mediante el aislamiento preferencial de mitocondrias seguido de extracción del ADN y la eliminación del ADN nuclear ("mitoenriquecimiento"). En el segundo enfoque se aprovecha la capacidad de escisión dirigida por la endonucleasa CRISPR-Cas9 sobre ADN previamente desfosforilado ("mitosecuenciación dirigida"). Los resultados difirieron con el tejido, la especie y la integridad del ADN. El método de mitoenriquecimiento produjo un 0,17%-12,33% de secuencias objetivo y una cobertura media entre 74,9 y 805 secuencias. El experimento de mitosecuenciación dirigida a partir de ADN genómico nativo produjo entre 1,83 y 55% de secuencias objetivo y una cobertura media de 38 a 2123 secuencias. Este estudio permitió completar mitogenomas de diferentes especies que incluyen regiones homopoliméricas, repeticiones en tándem y reorganización de genes. Demostramos que la secuenciación intensiva de fragmentos largos de ADN de peces es posible, se puede lograr con bajos recursos informáticos de una manera económica, superando el método generalizado de secuenciación genómica de baja cobertura y permitiendo el descubrimiento de mitogenomas de taxones de peces no modelo o poco estudiados a una amplia gama de laboratorios en todo el mundo.


Assuntos
DNA Mitocondrial , Genoma Mitocondrial , Animais , DNA Mitocondrial/genética , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mitocôndrias/genética
6.
Ecology ; 104(2): e3906, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36320096

RESUMO

Amplicon-sequence data from environmental DNA (eDNA) and microbiome studies provide important information for ecology, conservation, management, and health. At present, amplicon-sequencing studies-known also as metabarcoding studies, in which the primary data consist of targeted, amplified fragments of DNA sequenced from many taxa in a mixture-struggle to link genetic observations to the underlying biology in a quantitative way, but many applications require quantitative information about the taxa or systems under scrutiny. As metabarcoding studies proliferate in ecology, it becomes more important to develop ways to make them quantitative to ensure that their conclusions are adequately supported. Here we link previously disparate sets of techniques for making such data quantitative, showing that the underlying polymerase chain reaction mechanism explains the observed patterns of amplicon data in a general way. By modeling the process through which amplicon-sequence data arise, rather than transforming the data post hoc, we show how to estimate the starting DNA proportions from a mixture of many taxa. We illustrate how to calibrate the model using mock communities and apply the approach to simulated data and a series of empirical examples. Our approach opens the door to improve the use of metabarcoding data in a wide range of applications in ecology, public health, and related fields.


Assuntos
Código de Barras de DNA Taxonômico , Microbiota , Código de Barras de DNA Taxonômico/métodos , DNA/genética , Ecologia , Biodiversidade
7.
Proc Biol Sci ; 287(1940): 20202424, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33290686

RESUMO

Studies of the ecological effects of global change often focus on one or a few species at a time. Consequently, we know relatively little about the changes underway at real-world scales of biological communities, which typically have hundreds or thousands of interacting species. Here, we use COI mtDNA amplicons from monthly samples of environmental DNA to survey 221 planktonic taxa along a gradient of temperature, salinity, dissolved oxygen and carbonate chemistry in nearshore marine habitat. The result is a high-resolution picture of changes in ecological communities using a technique replicable across a wide variety of ecosystems. We estimate community-level differences associated with time, space and environmental variables, and use these results to forecast near-term community changes due to warming and ocean acidification. We find distinct communities in warmer and more acidified conditions, with overall reduced richness in diatom assemblages and increased richness in dinoflagellates. Individual taxa finding more suitable habitat in near-future waters are more taxonomically varied and include the ubiquitous coccolithophore Emiliania huxleyi and the harmful dinoflagellate Alexandrium sp. These results suggest foundational changes for nearshore food webs under near-future conditions.


Assuntos
Organismos Aquáticos/fisiologia , Código de Barras de DNA Taxonômico , DNA Ambiental , Biota , Carbonatos , Diatomáceas , Ecossistema , Haptófitas , Concentração de Íons de Hidrogênio , Plâncton , Salinidade , Água do Mar , Temperatura
8.
PeerJ ; 8: e8869, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292651

RESUMO

Seagrass beds provide a variety of ecosystem services, both within and outside the bounds of the habitat itself. Here we use environmental DNA (eDNA) amplicons to analyze a broad cross-section of taxa from ecological communities in and immediately surrounding eelgrass (Zostera marina). Sampling seawater along transects extending alongshore outward from eelgrass beds, we demonstrate that eDNA provides meter-scale resolution of communities in the field. We evaluate eDNA abundance indices for 13 major phylogenetic groups of marine and estuarine taxa along these transects, finding highly local changes linked with proximity to Z. marina for a diverse group of dinoflagellates, and for no other group of taxa. Eelgrass habitat is consistently associated with dramatic reductions in dinoflagellate abundance both within the contiguous beds and for at least 15 m outside, relative to nearby sites without eelgrass. These results are consistent with the hypothesis that eelgrass-associated communities have allelopathic effects on dinoflagellates, and that these effects can extend in a halo beyond the bounds of the contiguous beds. Because many dinoflagellates are capable of forming harmful algal blooms (HABs) toxic to humans and other animal species, the apparent salutary effect of eelgrass habitat on neighboring waters has important implications for public health as well as shellfish aquaculture and harvesting.

9.
Sci Rep ; 9(1): 12133, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31431641

RESUMO

As environmental DNA (eDNA) studies have grown in popularity for use in ecological applications, it has become clear that their results differ in significant ways from those of traditional, non-PCR-based surveys. In general, eDNA studies that rely on amplicon sequencing may detect hundreds of species present in a sampled environment, but the resulting species composition can be idiosyncratic, reflecting species' true biomass abundances poorly or not at all. Here, we use a set of simulations to develop a mechanistic understanding of the processes leading to the kinds of results common in mixed-template PCR-based (metabarcoding) studies. In particular, we focus on the effects of PCR cycle number and primer amplification efficiency on the results of diversity metrics in sequencing studies. We then show that proportional indices of amplicon reads capture trends in taxon biomass with high accuracy, particularly where amplification efficiency is high (median correlation up to 0.97). Our results explain much of the observed behavior of PCR-based studies, and lead to recommendations for best practices in the field.


Assuntos
DNA Ambiental/análise , Reação em Cadeia da Polimerase/métodos , Animais , Biodiversidade , Biomassa , Simulação por Computador , Código de Barras de DNA Taxonômico/métodos , Metagenômica/métodos , Modelos Teóricos
10.
PeerJ ; 6: e4521, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29576982

RESUMO

We can recover genetic information from organisms of all kinds using environmental sampling. In recent years, sequencing this environmental DNA (eDNA) has become a tractable means of surveying many species using water, air, or soil samples. The technique is beginning to become a core tool for ecologists, environmental scientists, and biologists of many kinds, but the temporal resolution of eDNA sampling is often unclear, limiting the ecological interpretations of the resulting datasets. Here, in a temporally and spatially replicated field study using ca. 313 bp of eukaryotic COI mtDNA as a marker, we find that nearshore organismal communities are largely consistent across tides. Our findings suggest that nearshore eDNA from both benthic and planktonic taxa tends to be endogenous to the site and water mass sampled, rather than changing with each tidal cycle. However, where physiochemical water mass characteristics change, we find that the relative contributions of a broad range of organisms to eDNA communities shift in concert.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...