Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 561: 741-748, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31767391

RESUMO

HYPOTHESIS: The wettability of the inner surfaces in a porous network is challenging to be accessed but essential to understand the complex performance of e.g. particulate systems. EXPERIMENTS: Here we investigate the water behavior in the macroporous (50-100 nm) voids of dense particle packings by performing low-field 1H NMR relaxometry in solid silica colloid crystals. The systems chosen guarantee a regular, known void size distribution with controllable water affinity (through thermal annealing), where the NMR experiment clearly discriminates the void water from micropore or bound water contributions, allowing separate monitoring. FINDINGS: Analysis of the saturated state indicates that the interparticle voids are completely filled after imbibition, even for less hydrophilic spheres. Due to the interaction with the silica surface, proton relaxation in void water is up to 100 times faster than that in bulk water, serving for assessment of the hydrophilicity within the sample. The relaxation time evolution upon dewetting provides an empirical measurement of the wettability inside the ensemble, revealing a progressively inhomogeneous wetting of increasingly hydrophobic surfaces. Our results provide insight into the imbibition state and dewetting performance in meso- and macroporous systems, with emphasis in the marked influence of the surface nature on the pore wetting distribution.

2.
Adv Colloid Interface Sci ; 234: 142-160, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27231015

RESUMO

Solid colloidal ensembles inherently contain water adsorbed from the ambient moisture. This water, confined in the porous network formed by the building submicron spheres, greatly affects the ensemble properties. Inversely, one can benefit from such influence on collective features to explore the water behavior in such nanoconfinements. Recently, novel approaches have been developed to investigate in-depth where and how water is placed in the nanometric pores of self-assembled colloidal crystals. Here, we summarize these advances, along with new ones, that are linked to general interfacial water phenomena like adsorption, capillary forces, and flow. Water-dependent structural properties of the colloidal crystal give clues to the interplay between nanoconfined water and solid fine particles that determines the behavior of ensembles. We elaborate on how the knowledge gained on water in colloidal crystals provides new opportunities for multidisciplinary study of interfacial and nanoconfined liquids and their essential role in the physics of utmost important systems such as particulate media.

3.
Adv Mater ; 27(17): 2686-714, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25753505

RESUMO

Water on solid surfaces is ubiquitously found in nature, in most cases due to mere adsorption from ambient moisture. Because porous structures have large surfaces, water may significantly affect their characteristics. This is particularly obvious in systems formed by separate particles, whose interactions are strongly influenced by small amounts of liquid. Water/solid phenomena, like adsorption, condensation, capillary forces, or interparticle cohesion, have typically been studied at relatively large scales down to the microscale, like in wet granular media. However, much less is known about how water is confined and acts at the nanoscale, for example, in the interstices of divided systems, something of utmost importance in many areas of materials science nowadays. With novel approaches, in-depth investigations as to where and how water is placed in the nanometer-sized pores of self-assembled colloidal crystals have been made, which are employed as a well-defined, versatile model system with useful optical properties. In this Progress Report, knowledge gained in the last few years about water distribution in such nanoconfinements is gathered, along with how it can be controlled and the consequences it brings about to extract new or enhance existing material functionalities. New methods developed and new capabilities of standard techniques are described, and the water interplay with the optical, chemical, and mechanical properties of the ensemble are discussed. Some lines for applicability are also highlighted and aspects to be addressed in the near future are critically summarized.

4.
Adv Mater ; 26(37): 6447-53, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25123401

RESUMO

Silver nanocubes with low size dispersion have been selectively photo-deposited on the positive surface of a periodically poled RbTiOPO4 ferroelectric crystal. The obtained nanocubes show preferential orientations with respect to the substrate suggesting epitaxial growth. The plasmonic resonances supported by the nanocubes are exploited to enhance blue SHG at the domain walls.


Assuntos
Nanotubos/química , Fosfatos/química , Rubídio/química , Prata/química , Titânio/química , Cristalização , Microscopia , Espectrofotometria , Propriedades de Superfície
5.
Adv Mater ; 24(46): 6204-9, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-22976241

RESUMO

Fast and reversible photonic-bandgap tunability is achieved in silica artificial opals by local heating. The effect is fully reversible as heat rapidly dissipates through the non-irradiated structure without active cooling and water is readsorbed. The performance is strongly enhanced by decreasing the photoirradiated opal volume, allowing bandgap shifts of 12 nm and response times of 20 ms.


Assuntos
Calefação , Dióxido de Silício/química , Adsorção , Cristalização , Raios Infravermelhos , Fótons , Raios Ultravioleta , Água/química
6.
Nano Lett ; 12(9): 4920-4, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22871185

RESUMO

Here we show the suitability of nanoindentation to study in detail the micromechanical response of silica colloidal crystals (CCs). The sensitivity to displacements smaller than the submicrometer spheres size, even resolving discrete events and superficial features, revealed particulate features with analogies to atomic crystals. Significant robustness, long-range structural deformation, and large energy dissipation were found. Easily implemented temperature/rate-dependent nanoindentation quantified the paramount role of adsorbed water endowing silica CCs with properties of wet granular materials like viscoplasticity. A novel "nongranular" CC was fabricated by substituting capillary bridges with silica necks to directly test water-independent mechanical response. Silica CCs, as specific (nanometric, ordered) wet granular assemblies with well-defined configuration, may be useful model systems for granular science and capillary cohesion at the nanoscale.


Assuntos
Coloides/química , Testes de Dureza/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Dióxido de Silício/química , Módulo de Elasticidade , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície , Viscosidade
7.
Langmuir ; 27(23): 13992-5, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22040096

RESUMO

Physisorbed and structurally bound (surface and internal) water in silica opals are distinguished and quantified by thermogravimetry. By controlled dehydroxylation with thermal annealing, we correlate these forms of water with the silica chemistry. In particular, we find that the silica capability to physically adsorb water from ambient moisture exhibits three regimes, associated with the distinct condensation behavior of bonded and unbonded surface silanols. Features in both opal IR absorbance and photonic band gap reproduce the physisorbed water regimes. This allows direct assessment of the water content and its evolution just by routine optical spectroscopy, being a useful tool for local and nondestructive analysis of colloidal silica. Besides, this provides a simple recipe for accurate tuning of the opal photonic band gap (about 10% in position and width) by just selecting the annealing temperature.


Assuntos
Dióxido de Silício/química , Água/química , Adsorção , Fenômenos Ópticos , Propriedades de Superfície , Temperatura
9.
Small ; 7(13): 1838-45, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21567944

RESUMO

Some characteristics of silica--based structures-like the photonic properties of artificial opals formed by silica spheres--can be greatly affected by the presence of adsorbed water. The reversible modification of the water content of an opal is investigated here by moderate heating (below 300 °C) and measuring in situ the changes in the photonic bandgap. Due to reversible removal of interstitial water, large blueshifts of 30 nm and a bandgap narrowing of 7% are observed. The latter is particularly surprising, because water desorption increases the refractive index contrast, which should lead instead to bandgap broadening. A quantitative explanation of this experiment is provided using a simple model for water distribution in the opal that assumes a nonclose-packed fcc structure. This model further predicts that, at room temperature, about 50% of the interstitial water forms necks between nearest-neighbor spheres, which are separated by 5% of their diameter. Upon heating, dehydration predominantly occurs at the sphere surfaces (in the opal voids), so that above 65 °C the remaining water resides exclusively in the necks. A near-close-packed fcc arrangement is only achieved above 200 °C. The high sensitivity to water changes exhibited by silica opals, even under gentle heating of few degrees, must be taken into account for practical applications. Remarkably, accurate control of the distance between spheres--from 16 to 1 nm--is obtained with temperature. In this study, novel use of the optical properties of the opal is made to infer quantitative information about water distribution within silica beads and dehydration phenomena from simple reflection spectra. Taking advantage of the well-defined opal morphology, this approach offers a simple tool for the straightforward investigation of generic adsorption-desorption phenomena, which might be extrapolated to many other fields involving capillary condensation.


Assuntos
Dióxido de Silício/química , Água/química , Adsorção , Fótons , Propriedades de Superfície , Temperatura
10.
Nat Mater ; 7(6): 490-7, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18454152

RESUMO

Organic holographic materials are pursued as versatile and cheap data-storage materials. It is generally assumed that under steady-state conditions, only photorefractive holographic media exhibit a non-local response to a light-intensity pattern, which results in an asymmetric two-beam coupling or 'gain', where intensity is transferred from one beam to the other as a measure of writing efficiency. Here, we demonstrate non-local holographic recording in a non-photorefractive material. We demonstrate that reversible photoisomerization gratings recorded in a non-photorefractive azo-based material exhibit large optical gain coefficients beyond 1,000 cm(-1), even for polarization gratings. The grating characteristics differ markedly from classical photorefractive features, but can be modelled by considering the influence of the Poynting vector on the photoisomerization. The external control of the Poynting vector enables manipulation of the gain coefficient, including its sign (the direction of energy exchange), a novel phenomenon we refer to as 'gain steering'. A very high sensitivity of about 100 cm(2) J(-1) was achieved. This high sensitivity, combined with a high spatial resolution, suggests a great technical advantage for applications in image processing and phase conjugation.

12.
Nature ; 418(6901): 959-64, 2002 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-12198543

RESUMO

Among the various applications for reversible holographic storage media, a particularly interesting one is time-gated holographic imaging (TGHI). This technique could provide a noninvasive medical diagnosis tool, related to optical coherence tomography. In this technique, biological samples are illuminated within their transparency window with near-infrared light, and information about subsurface features is obtained by a detection method that distinguishes between reflected photons originating from a certain depth and those scattered from various depths. Such an application requires reversible holographic storage media with very high sensitivity in the near-infrared. Photorefractive materials, in particular certain amorphous organic systems, are in principle promising candidate media, but their sensitivity has so far been too low, mainly owing to their long response times in the near-infrared. Here we introduce an organic photorefractive material -- a composite based on the poly(arylene vinylene) copolymer TPD-PPV -- that exhibits favourable near-infrared characteristics. We show that pre-illumination of this material at a shorter wavelength before holographic recording improves the response time by a factor of 40. This process was found to be reversible. We demonstrate multiple holographic recording with this technique at video rate under practical conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...